Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pressure dependence of the Raman frequency calculated from the volume data close to the ferroelectric-paraelectric transition in PbTiO3
Date
2017-01-01
Author
Yurtseven, Hasan Hamit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
We calculate the pressure dependence of the Raman frequencies of some Raman modes by using the observed volume data through the mode Gruneisen parameters for the ferroelectri-paraelectric transition in PbTiO3. The mode Gruneisen parameters which we have determined using the observed Raman frequencies for the soft modes, increase considerably with increasing pressure toward the transition pressure (PC similar to 11 GPa) from the tetragonal (ferroelectric) to the cubic (paraelectric) phase in PbTiO3. Variation of the mode Gruneisen parameter with the pressure is rather smooth for the other Raman modes studied as compared to the drastic change at PC for the soft modes in this ferroelectric material. Raman frequencies (energy shifts) of the modes which we have calculated, decrease from the ferroelectric to the paraelectric phase with the exception of the optical modes of E(3LO) and E(3TO) whose Raman frequencies increase with increasing pressure.
Subject Keywords
Raman modes
,
Gruneisen parameter
,
Tetragonal-cubic transition
,
PbTiO3
URI
https://hdl.handle.net/11511/43052
Journal
FERROELECTRICS
DOI
https://doi.org/10.1080/00150193.2017.1408275
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Temperature and Pressure Effect on the Raman Frequencies Calculated from the Crystal Volume in the gamma-Phase of Solid Nitrogen
Yurtseven, Hasan Hamit (Springer Science and Business Media LLC, 2015-09-01)
The temperature and pressure dependences of the Raman frequencies of the lattice modes (E-g and B-1g modes) and of an internal mode (2331 cm(-1)) are predicted using the observed molar volume data from the literature in the gamma-phase of solid N-2. This calculation is carried out by means of the mode Gruneisen parameter of each Raman mode in the gamma-phase of solid nitrogen. Our results show that the predicted Raman frequencies of the E-g mode increase as the pressure increases. The Raman frequencies of t...
Temperature and pressure dependence of the Raman frequency shifts in anthracene
Ozdemir, H.; Yurtseven, Hasan Hamit (2016-08-01)
In this study, the Raman frequency shifts of phonons and vibrons of crystalline anthracene as functions of temperature (at zero pressure) and pressure (at ambient temperature) have-been calculated using the experimental volume data from the literature. This calculation is performed for six phonons and nine vibrons through the mode Gruneisen parameters which have been determined from the Raman frequency and volume data at various pressures. Our predicted Raman frequencies of the phonon modes decrease with in...
Calculation of the Raman and IR frequencies from the volume data at high pressures in N-2
AKAY, ÖZGE; Yurtseven, Hasan Hamit (2018-01-01)
Raman and IR frequencies of N-2 in the molecular state are calculated as a function of pressure up to 160 GPa by using the volume data from the literature through the mode Gruneisen parameter. By determining the Gruneisen parameters for the lattice modes and vibrons which decrease mostly with increasing pressure from the observed frequency (Raman, IR) and volume data, the Raman and IR frequencies of those modes are calculated at various pressure at room and low temperatures. We find that the Raman and IR fr...
Pressure Dependence of the Raman Modes Related to the Phase Transitions in Cyclohexane
Yurtseven, Hasan Hamit (2015-03-01)
The pressure dependence of the Raman frequencies for the v(21) mode is studied by using the volume data at room temperature close to the transitions among the phases of III, IV and V in cyclohexane. By determining the pressure dependence of the mode Gruneisen parameter gamma T in the phases and taking the average values, the Raman frequencies of those modes associated with the phase transitions are predicted through the volume data in cyclohexane. Our predicted Raman frequencies agree with those observed ex...
Pressure dependence of the Raman frequencies for the translational mode in ammonia solid II
Yurtseven, Hasan Hamit (Elsevier BV, 2006-12-01)
We study here the translational mode of the ammonia solid II near the melting point by calculating its Raman frequencies as a function of pressure for the fixed temperatures of 230.4, 263.4 and 297.5 K. We perform this calculation of the Raman frequencies using the volume data by means of our Gruneisen relation. The Raman frequency shifts as the volume changes with the pressure, exhibit an anomalous behaviour near the melting point in the ammonia solid II.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Yurtseven, “Pressure dependence of the Raman frequency calculated from the volume data close to the ferroelectric-paraelectric transition in PbTiO3,”
FERROELECTRICS
, pp. 245–255, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43052.