Temperature and pressure dependence of the Raman frequency shifts in anthracene

2016-08-01
In this study, the Raman frequency shifts of phonons and vibrons of crystalline anthracene as functions of temperature (at zero pressure) and pressure (at ambient temperature) have-been calculated using the experimental volume data from the literature. This calculation is performed for six phonons and nine vibrons through the mode Gruneisen parameters which have been determined from the Raman frequency and volume data at various pressures. Our predicted Raman frequencies of the phonon modes decrease with increasing temperature (zero pressure) linearly, whereas they increase with increasing pressure (ambient temperature) nonlinearly, as observed experimentally for anthracene. For vibrons, we find that the Raman frequencies are almost independent of temperature and pressure in this crystalline system.
INDIAN JOURNAL OF PURE & APPLIED PHYSICS

Suggestions

Temperature and Pressure Effect on the Raman Frequencies Calculated from the Crystal Volume in the gamma-Phase of Solid Nitrogen
Yurtseven, Hasan Hamit (Springer Science and Business Media LLC, 2015-09-01)
The temperature and pressure dependences of the Raman frequencies of the lattice modes (E-g and B-1g modes) and of an internal mode (2331 cm(-1)) are predicted using the observed molar volume data from the literature in the gamma-phase of solid N-2. This calculation is carried out by means of the mode Gruneisen parameter of each Raman mode in the gamma-phase of solid nitrogen. Our results show that the predicted Raman frequencies of the E-g mode increase as the pressure increases. The Raman frequencies of t...
Pressure dependence of the Raman frequency calculated from the volume data close to the ferroelectric-paraelectric transition in PbTiO3
Yurtseven, Hasan Hamit (2017-01-01)
We calculate the pressure dependence of the Raman frequencies of some Raman modes by using the observed volume data through the mode Gruneisen parameters for the ferroelectri-paraelectric transition in PbTiO3. The mode Gruneisen parameters which we have determined using the observed Raman frequencies for the soft modes, increase considerably with increasing pressure toward the transition pressure (PC similar to 11 GPa) from the tetragonal (ferroelectric) to the cubic (paraelectric) phase in PbTiO3. Variatio...
Calculation of the Raman and IR frequencies from the volume data at high pressures in N-2
AKAY, ÖZGE; Yurtseven, Hasan Hamit (2018-01-01)
Raman and IR frequencies of N-2 in the molecular state are calculated as a function of pressure up to 160 GPa by using the volume data from the literature through the mode Gruneisen parameter. By determining the Gruneisen parameters for the lattice modes and vibrons which decrease mostly with increasing pressure from the observed frequency (Raman, IR) and volume data, the Raman and IR frequencies of those modes are calculated at various pressure at room and low temperatures. We find that the Raman and IR fr...
Temperature dependence of the piezoelectric resonance frequency in relation to the anomalous strain near the incommensurate phase of quartz
Ates, S.; Yurtseven, Hasan Hamit (2021-01-01)
The temperature dependence of the piezoelectric resonance frequency is analyzed by the power-law formula in the vicinity of the critical temperature of the incommensurate (INC) phase in quartz using the experimental data from the literature. By considering the piezoelectric resonance frequency as an order parameter of the INC phase, correlation between the piezoelectric resonance frequency and the strain is constructed, which both decrease linearly with increasing temperature toward T-c in quartz. Our resul...
Temperature dependence of the mode Gruneisen parameter in the vicinity of the lambda-transition point in NH4Cl
Karacali, H.; Yurtseven, Hasan Hamit (2006-11-01)
This study gives our relations between the specific heat C P and the Raman frequency shifts (1/v)(partial derivative v/partial derivative T)(p) for the lattice modes of v(5) (144 cm(-1)) and v(5) (174 cm(-1)), when the mode Gruneisen parameter gamma(p) depends on the temperature near. the lambda-transition in NH4Cl (T-lambda = 242.5 K, P = 0).
Citation Formats
H. Ozdemir and H. H. Yurtseven, “Temperature and pressure dependence of the Raman frequency shifts in anthracene,” INDIAN JOURNAL OF PURE & APPLIED PHYSICS, pp. 489–494, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53314.