Interleukin-15 acts as an immunological co-adjuvant for liposomal antigen in vivo

1997-03-01
The recently discovered interleukin-15 (IL-15) is known to bind to the receptor of interleukin-2 (IL-2) and to share several of the latter's immunological properties. In the present study, the first to our knowledge on IL-15 behaviour in vivo, we examined the possibility that IL-15 also shares the ability of IL-2 to enhance the immunological adjuvant property of liposomes by acting as a co-adjuvant. The cytokine and a model antigen (tetanus toroid) were either co-entrapped by the dehydration rehydration method into, or covalently co-linked by diazotization to the surface of the same liposomes, or entrapped in different liposome populations. Intramuscular immunization of CD-1 mice with a variety of IL-15 and toroid formulations revealed that IL-15 augments anti-toroid IgG (IgG(1,) IgG(2,) IgG(2b)) responses well above (up to ten-fold) those achieved with liposomal toroid alone (or with a mixture of free IL-15 and toroid) when the cytokine and the antigen are associated with the same vesicles but not when in different vesicle populations that were mixed before injection. Higher responses were observed for all three subclasses studied only with liposomes where IL-15 and antigen were accommodated on their surface. (C) 1997 Elsevier Science B.V.
IMMUNOLOGY LETTERS

Suggestions

Suppressive oligodeoxynucleotides inhibit Th1 differentiation by blocking IFN-gamma- and IL-12-mediated signaling.
Shirota, H; Gürsel, Mayda; Klinman, DM (The American Association of Immunologists, 2004-10-15)
Repetitive TTAGGG motifs present at high frequency in mammalian telomeres can suppress Th1-mediated immune responses. Synthetic oligonucleotides (ODN) containing TTAGGG motifs mimic this activity and have proven effective in the prevention/ treatment of certain Th1-dependent autoimmune diseases. This work explores the mechanism by which suppressive ODN block the induction of Th1 immunity. Findings indicate that these ODN inhibit IFN- -induced STAT1 phosphorylation and IL-12- induced STAT3 and STAT4 phosphor...
Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs
Verthelyi, D; Ishii, KJ; Gürsel, Mayda; Takeshita, F; Klinman, DM (The American Association of Immunologists, 2001-02-15)
Oligodeoxynucleotides (ODN) that contain unmethylated CpG dinucleotides trigger a strong innate immune response in vertebrates. CpG ODN show promise as vaccine adjuvants, anti-allergens, and immunoprotective agents in animal models. Their transition to clinical use requires the identification of motifs that are optimally stimulatory in humans. Analysis of hundreds of novel ODN resulted in the identification and characterization of two structurally distinct "clusters" of immunostimulatory CpG ODN, One cluste...
Cutting edge: Role of toll-like receptor 9 in CpG DNA-induced activation of human cells
Takeshita, F; Leifer, CA; Gursel, I; Ishii, KJ; Takeshita, S; Gürsel, Mayda; Klinman, DM (The American Association of Immunologists, 2001-10-01)
Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are ...
CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection.
Verthelyi, D; Gürsel, Mayda; Kenney, RT; Lifson, JD; Liu, S; Mican, J; Klinman, DM (The American Association of Immunologists, 2003-05-01)
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) mimic microbial DNA and activate effectors of the innate immune response, which limits the spread of pathogens and promotes an adaptive immune response. CpG ODNs have been shown to protect mice from infection with intracellular pathogens. Unfortunately, CpG motifs that optimally stimulate humans are only weakly active in mice, mandating the use of nonhuman primates to monitor the activity and safety of "human" CpG ODNs in vivo. This study demonstrates t...
Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation.
Ishii, KJ; Takeshita, F; Gursel, I; Gürsel, Mayda; Conover, J; Nussenzweig, A; Klinman, DM (Rockefeller University Press, 2002-07-15)
Unmethylated CpG motifs present in bacterial DNA stimulate a strong innate immune response. There is evidence that DNA-dependent protein kinase (DNA-PK) mediates CpG signaling. Specifically, wortmannin (an inhibitor of phosphatidylinositol 3 kinase [PI3]-kinases including DNA-PK) interferes with CpG-dependent cell activation, and DNA-PK knockout (KO) mice fail to respond to CpG stimulation. Current studies establish that wortmannin actually inhibits the uptake and colocalization of CpG DNA with toll-like re...
Citation Formats
M. Gürsel, “Interleukin-15 acts as an immunological co-adjuvant for liposomal antigen in vivo,” IMMUNOLOGY LETTERS, pp. 161–165, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43143.