Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On characterization of a Riesz homomorphism on C(X)-space
Date
2007-06-01
Author
AKKAR ERCAN, ZÜBEYDE MÜGE
Önal, Süleyman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
184
views
0
downloads
Cite This
Let X be a realcompact space. We present a very simple and elementary proof of the well known fact that every Riesz homomorphism pi : C(X) -> R is point evaluated. Moreover, the proof is given in ZF.
Subject Keywords
Mathematics (miscellaneous)
URI
https://hdl.handle.net/11511/43144
Journal
QUAESTIONES MATHEMATICAE
DOI
https://doi.org/10.2989/16073600709486189
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
A remark on the homomorphism on C(X)
Ercan, Z; Onal, S (American Mathematical Society (AMS), 2005-01-01)
Let X be a real compact space. Without using the axiom of choice we present a simple and direct proof that a non-zero homomorphism on C(X) is determined by a point.
Piecewise polynomials with different smoothness degrees on polyhedral complexes
ALTINOK BHUPAL, SELMA; Sipahi, Neslihan Os (Informa UK Limited, 2019-05-01)
For a given d-dimensional polyhedral complex Delta and a given degree k, we consider the vector space of piecewise polynomial functions on Delta of degree at most k with a different smoothness condition on each pair of adjacent d-faces of Delta. This is a finite dimensional vector space. The fundamental problem in Approximation Theory is to compute the dimension of this vector space. It is known that the dimension is given by a polynomial for sufficiently large k via commutative algebra. By using the techni...
On homology of real algebraic varieties
Ozan, Yıldıray (American Mathematical Society (AMS), 2001-01-01)
Let R be a commutative ring with unity and X an R-oriented compact nonsingular real algebraic variety of dimension n. If i : X --> X-C is any nonsingular complexification of X, then the kernel, which we will denote by KHk(X, R), of the induced homomorphism i(*) : H-k(X, R) --> H-k(X-C, R) is independent of the complexification. In this work, we study KHk(X, R) and give some of its applications.
Invariant subspaces for Banach space operators with an annular spectral set
Yavuz, Onur (2008-01-01)
Consider an annulus Omega = {z epsilon C : r(0) 0 such that parallel to p(T)parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} and parallel to p(r(0)T(-1))parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} for all polynomials p. Then there exists a nontrivial common invariant subspace for T* and T*(-1).
An obstruction to finding algebraic models for smooth manifolds with prescribed algebraic submanifolds
CELIKTEN, A; Ozan, Yıldıray (2001-03-01)
Let N ⊆ M be a pair of closed smooth manifolds and L an algebraic model for the submanifold N. In this paper, we will give an obstruction to finding an algebraic model X of M so that the submanifold N corresponds in X to an algebraic subvariety isomorphic to L.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. M. AKKAR ERCAN and S. Önal, “On characterization of a Riesz homomorphism on C(X)-space,”
QUAESTIONES MATHEMATICAE
, pp. 147–150, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43144.