Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A remark on the homomorphism on C(X)
Download
index.pdf
Date
2005-01-01
Author
Ercan, Z
Onal, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
160
views
0
downloads
Cite This
Let X be a real compact space. Without using the axiom of choice we present a simple and direct proof that a non-zero homomorphism on C(X) is determined by a point.
Subject Keywords
Applied Mathematics
,
General Mathematics
URI
https://hdl.handle.net/11511/65682
Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
DOI
https://doi.org/10.1090/s0002-9939-05-07930-x
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
A remark on CD0(K)-spaces
Alpay, S.; Ercan, Z. (Springer Science and Business Media LLC, 2006-05-01)
A representation of the CDo (K)-space is given in [1, 2] for a compact Hausdorff space K without isolated points. We generalize this to an arbitrary countably compact space K without any assumption on isolated points.
On characterization of a Riesz homomorphism on C(X)-space
AKKAR ERCAN, ZÜBEYDE MÜGE; Önal, Süleyman (Informa UK Limited, 2007-06-01)
Let X be a realcompact space. We present a very simple and elementary proof of the well known fact that every Riesz homomorphism pi : C(X) -> R is point evaluated. Moreover, the proof is given in ZF.
A formula for the joint local spectral radius
Emel'yanov, EY; Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We give a formula for the joint local spectral radius of a bounded subset of bounded linear operators on a Banach space X in terms of the dual of X.
On homology of real algebraic varieties
Ozan, Yıldıray (American Mathematical Society (AMS), 2001-01-01)
Let R be a commutative ring with unity and X an R-oriented compact nonsingular real algebraic variety of dimension n. If i : X --> X-C is any nonsingular complexification of X, then the kernel, which we will denote by KHk(X, R), of the induced homomorphism i(*) : H-k(X, R) --> H-k(X-C, R) is independent of the complexification. In this work, we study KHk(X, R) and give some of its applications.
A note on a theorem of Dwyer and Wilkerson
Öztürk, Semra (Springer Science and Business Media LLC, 2001-01-03)
We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group Z(2) x Z(2n), n greater than or equal to 2. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of Z(2) x Z(2n).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ercan and S. Onal, “A remark on the homomorphism on C(X),”
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
, pp. 3609–3611, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65682.