A multi-objective genetic algorithm for a bi-objective facility location problem with partial coverage

2016-04-01
In this study, we present a bi-objective facility location model that considers both partial coverage and service to uncovered demands. Due to limited number of facilities to be opened, some of the demand nodes may not be within full or partial coverage distance of a facility. However, a demand node that is not within the coverage distance of a facility should get service from the nearest facility within the shortest possible time. In this model, it is assumed that demand nodes within the predefined distance of opened facilities are fully covered, and after that distance the coverage level decreases linearly. The objectives are defined as the maximization of full and partial coverage, and the minimization of the maximum distance between uncovered demand nodes and their nearest facilities. We develop a new multi-objective genetic algorithm (MOGA) called modified SPEA-II (mSPEA-II). In this method, the fitness function of SPEA-II is modified and the crowding distance of NSGA-II is used. The performance of mSPEA-II is tested on randomly generated problems of different sizes. The results are compared with the solutions of the most well-known MOGAs, NSGA-II and SPEA-II. Computational experiments show that mSPEA-II outperforms both NSGA-II and SPEA-II.

Suggestions

An interactive evolutionary algorithm for the multiobjective relocation problem with partial coverage
Orbay, Berk; Karasakal, Esra; Department of Operational Research (2011)
In this study, a bi-objective capacitated facility location problem is presented which includes partial coverage concept and relocation of facility nodes. In partial coverage, a predefined distance between a demand node and a facility node is assumed to be fully covered. After the predefined distance, the service level commences to decay linearly. The problem is designed to consider the existence of already functioning facility nodes. It is allowed to close these existing facilities and open new facilities ...
Bi-objective facility location problems in the presence of partial coverage
Silav, Ahmet; Karasakal, Esra; Department of Industrial Engineering (2009)
In this study, we propose a bi-objective facility location model that considers both partial coverage and service to uncovered demands. In this model, it is assumed that the demand nodes within the predefined distance of opened facilities are fully covered and after that distance the coverage level linearly decreases. The objectives are the maximization of the sum of full and partial coverage the minimization of the maximum distance between uncovered demand nodes and their closest opened facilities. We appl...
A Genetic algorithm for healthcare facility location problem
İşbilir, Melike; Bayındır, Zeynep Pelin; İyigün, Cem; Department of Industrial Engineering (2016)
In this study, we consider the problem of locating emergency healthcare facilities in urban areas. Upon emergency occurrence, patients are directed to any one of the emergency centers with a likelihood that depends on the travel time. Moreover, the survival, that represents the severity of the consequences of the emergency situation, is also probabilistic and is a function of the travel time. A mathematical model is constructed under the objective of maximizing expected number of survivors while determining...
A maximal covering location model in the presence of partial coverage
Karasakal, O; Karasakal, Esra (2004-08-01)
The maximal covering location problem (MCLP) addresses the issue of locating a predefined number of facilities in order to maximize the number of demand points that can be covered. In a classical sense, a demand point is assumed to be covered completely if located within the critical distance of the facility and not covered at all outside of the critical distance. Since the optimal solution to a MCLP is likely sensitive to the choice of the critical distance, determining a critical distance value when the c...
A genetic algorithm for the p-hub center problem with stochastic service level constraints
Eraslan Demirci, Şükran; Meral, Fatma Sedef; Department of Industrial Engineering (2010)
The emphasis on minimizing the costs and travel times in a network of origins and destinations has led the researchers to widely study the hub location problems in the area of location theory in which locating the hub facilities and designing the hub networks are the issues. The p-hub center problem considering these issues is the subject of this study. p-hub center problem with stochastic service level constraints and a limitation on the travel times between the nodes and hubs is addressed, which is an unc...
Citation Formats
E. Karasakal, “A multi-objective genetic algorithm for a bi-objective facility location problem with partial coverage,” TOP, pp. 206–232, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43172.