Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A maximal covering location model in the presence of partial coverage
Date
2004-08-01
Author
Karasakal, O
Karasakal, Esra
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
42
views
0
downloads
Cite This
The maximal covering location problem (MCLP) addresses the issue of locating a predefined number of facilities in order to maximize the number of demand points that can be covered. In a classical sense, a demand point is assumed to be covered completely if located within the critical distance of the facility and not covered at all outside of the critical distance. Since the optimal solution to a MCLP is likely sensitive to the choice of the critical distance, determining a critical distance value when the coverage does not change in a crisp way from "fully covered" to "not covered" at a specific distance may lead to erroneous results. We allow the coverage to change from "covered" to "not-covered" within a distance range instead of a single critical distance and call this intermediate coverage level partial coverage, In this paper, we formulate the MCLP in the presence of partial coverage, develop a solution procedure based on Lagrangean relaxation and show the effect of the approach on the optimal solution by comparing it with the classical approach.
Subject Keywords
Lagrangean relaxation
,
Partial coverage
,
Maximal covering problem
,
Location
URI
https://hdl.handle.net/11511/46610
Journal
COMPUTERS & OPERATIONS RESEARCH
DOI
https://doi.org/10.1016/s0305-0548(03)00105-9
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
A genetic algorithm for the uncapacitated single allocation planar hub location problem
Damgacioglu, Haluk; DİNLER, DERYA; Özdemirel, Nur Evin; İyigün, Cem (2015-10-01)
Given a set of n interacting points in a network, the hub location problem determines location of the hubs (transfer points) and assigns spokes (origin and destination points) to hubs so as to minimize the total transportation cost. In this study, we deal with the uncapacitated single allocation planar hub location problem (PHLP). In this problem, all flow between pairs of spokes goes through hubs, capacities of hubs are infinite, they can be located anywhere on the plane and are fully connected, and each s...
A generalized Weiszfeld method for the multi-facility location problem
İyigün, Cem (2010-05-01)
An iterative method is proposed for the K facilities location problem. The problem is relaxed using probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose the problem into K single-facility location problems, are updated at each iteration together with the facility locations. The proposed method is a natural generalization of the Weiszfeld method to several facilities.
A multi-objective genetic algorithm for a bi-objective facility location problem with partial coverage
Karasakal, Esra (2016-04-01)
In this study, we present a bi-objective facility location model that considers both partial coverage and service to uncovered demands. Due to limited number of facilities to be opened, some of the demand nodes may not be within full or partial coverage distance of a facility. However, a demand node that is not within the coverage distance of a facility should get service from the nearest facility within the shortest possible time. In this model, it is assumed that demand nodes within the predefined distanc...
A minisum location problem with regional demand considering farthest Euclidean distances
DİNLER, DERYA; Tural, Mustafa Kemal (2016-06-01)
We consider a continuous multi-facility location-allocation problem that aims to minimize the sum of weighted farthest Euclidean distances between (closed convex) polygonal and/or circular demand regions, and facilities they are assigned to. We show that the single facility version of the problem has a straightforward second-order cone programming formulation and can therefore be efficiently solved to optimality. To solve large size instances, we adapt a multi-dimensional direct search descent algorithm to ...
An iterative hub location and routing problem for postal delivery systems
Çetiner, Selim; Sepil, Canan; Süral, Haldun; Department of Industrial Engineering (2003)
In this study, we consider the Turkish postal delivery system and develop an effective solution approach for the combined hub location and routing problem where the location of hub nodes are determined, the nonhub regional postal offices are allocated to the hubs, and the optimal set of routes are determined for each hub. Since the realized post-routing distances between origin-destination pairs are different from those used in the hub-location model, we develop an algorithm that finds the route-compatible ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Karasakal and E. Karasakal, “A maximal covering location model in the presence of partial coverage,”
COMPUTERS & OPERATIONS RESEARCH
, pp. 1515–1526, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46610.