Fuzzy model tuning using simulated annealing

Yanar, Tahsin Alp
Akyürek, Sevda Zuhal
This paper presents the use of simulated annealing metaheuristic for tuning Mamdani type fuzzy models. Structure of the Mamdani fuzzy model is learned from input-output data pairs using Wang and Mendel's method and fuzzy c-means clustering algorithm. Then, parameters of the fuzzy system are tuned through simulated annealing. In this paper, we perform experiments to examine effects of (a) initial solution generated by Wang and Mendel's method and fuzzy c-means clustering method, (b) membership function update procedure, (c) probability parameter for the calculation of the initial temperature, (d) temperature update coefficient used for cooling schedule, and (e) randomness level in the disturbance mechanism used in simulated annealing algorithm on the tuning of Mamdani type fuzzy models. Experiments are performed with Mackey-Glass chaotic time series. The results indicate that Wang and Mendel's method provides better starting configuration for simulated annealing compared to fuzzy c-means clustering method, and for the membership function update parameter, MFChangeRate is an element of (0,1], and the probability parameter for the calculation of the initial temperature, P(0) is an element of (0, 1), values close to zero produced better results.


Stable controller design for T-S fuzzy systems based on Lie algebras
Banks, SP; Gurkan, E; Erkmen, İsmet (Elsevier BV, 2005-12-01)
In this paper, we study the stability of fuzzy control systems of Takagi-Sugeno-(T-S) type based on the classical theory of Lie algebras. T-S fuzzy systems are used to model nonlinear systems as a set of rules with consequents of the type x(t) = A(l)x (t) + B(l)u (t). We conduct the stability analysis of such T-S fuzzy models using the Lie algebra LA generated by the A(l) matrices of these subsystems for each rule in the rule base. We first develop our approach of stability analysis for a commuting algebra ...
Analysis of single Gaussian approximation of Gaussian mixtures in Bayesian filtering applied to mixed multiple-model estimation
Orguner, Umut (Informa UK Limited, 2007-01-01)
This paper examines the effect of the moment-matched single Gaussian approximation, which is made in various multiple-model filtering applications to approximate a Gaussian mixture, on the Bayesian filter performance. The estimation error caused by the approximation is analysed for both the prediction and the measurement updates of a Bayesian filter. An approximate formula is found for the covariance of the error caused by the approximation for a general Gaussian mixture with arbitrary components. The calcu...
Karaesmen, Engin; ILERI, L; AKKAS, N (Elsevier BV, 1992-08-03)
This paper investigates the dynamic behaviour of a shallow, viscoelastic, spherical shell under a harmonic excitation. The time evolutions of the response of the corresponding nonlinear dynamical system are described by the phase portraits and the bifurcation of the parameter dependent system is studied numerically so as to identify qualitative changes in the phase portrait. The viscoelastic shell, having more than one equilibrium configuration for some problem parameters, shows periodic and/or random-like ...
A complete axiomatization for fuzzy functional and multivalued dependencies in fuzzy database relations
Sozat, MI; Yazıcı, Adnan (Elsevier BV, 2001-01-15)
This paper first introduces the formal definitions of fuzzy functional and multivalued dependencies which are given on the basis of the conformance values presented here. Second, the inference rules are listed after both fuzzy functional and multivalued dependencies are shown to be consistent, that is, they reduce to those of the classic functional and multivalued dependencies when crisp attributes are involved. Finally, the inference rules presented here are shown to be sound and complete for the family of...
Improving reinforcement learning by using sequence trees
Girgin, Sertan; Polat, Faruk; Alhajj, Reda (Springer Science and Business Media LLC, 2010-12-01)
This paper proposes a novel approach to discover options in the form of stochastic conditionally terminating sequences; it shows how such sequences can be integrated into the reinforcement learning framework to improve the learning performance. The method utilizes stored histories of possible optimal policies and constructs a specialized tree structure during the learning process. The constructed tree facilitates the process of identifying frequently used action sequences together with states that are visit...
Citation Formats
T. A. Yanar and S. Z. Akyürek, “Fuzzy model tuning using simulated annealing,” EXPERT SYSTEMS WITH APPLICATIONS, pp. 8159–8169, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43247.