Age and geodynamic evolution of the Black Sea Basin: Tectonic evidences of rifting in Crimea

Download
2018-05-01
Hippolyte, Jean-Claude
Murovskaya, Anna
Volfman, Yuri
Yegorova, Tamara
Gintov, Oleg
Kaymakcı, Nuretdin
SANĞU, ERCAN
The timing and direction of opening of the Black Sea Basin are debated. However, parts of its margins were inverted during Cenozoic and can be studied onshore. The Crimean Mountains are located in the middle of the northern margin of the basin, and at the onshore prolongation of the mid-Black Sea High.
MARINE AND PETROLEUM GEOLOGY

Suggestions

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region
Meijers, M. J. M.; Vrouwe, B.; van Hinsbergen, D. J. J.; Kuiper, K. F.; Wijbrans, J.; Davies, G. R.; Stephenson, R. A.; Kaymakcı, Nuretdin; Matenco, L.; Saintot, A. (2010-10-01)
The early Cretaceous and younger opening of the Black Sea has obliterated much of the older record of Tethyan subduction below southeastern Europe. The earlier Mesozoic evolution was dominated by opening and closure of Tethyan oceans between Gondwana and Laurasia with their consumption, at least in part, accommodated along the southern Eurasian margin. Crimea (Ukraine), a peninsula in the northern Black Sea, represents the northernmost region of southeastern Europe that exposes a record of a pre-Cretaceous ...
Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey)
Hippolyte, JC; Espurt, Nikolas; Kaymakcı, Nuretdin; SANĞU, ERCAN; Mueller, C. (2016-01-01)
Geophysical data allowed the construction of a similar to 250-km-long lithospheric-scale balanced cross section of the southern Black Sea margin (Espurt et al. in Lithosphere 6:26-34, 2014). In this paper, we combine structural field data, stratigraphic data, and fault kinematics analyses with the 70-km-long onshore part of the section to reconstruct the geodynamic evolution of the Central Pontide orogen. These data reveal new aspects of the structural evolution of the Pontides since the Early Cretaceous. T...
Active tectonics and kinematics of Fethiye-Göcek Bay, SW Turkey
Tosun, Levent; Kaymakcı, Nuretdin; Department of Geological Engineering (2018)
Tomographic studies conducted in Eastern Mediterranean region reveal that Pliny-Strabo Trench corresponds to a tear known as "STEP" (Subduction Transform Edge Propagator) fault connecting the Aegean and Cyprean trenches along the northern edge of the northward subducting African lithosphere. Recently, it is claimed that Fethiye-Burdur Fault Zone, which interpreted as a sinistral transtensional shear zone, is the northeaster continuation of this fault. In order to test this hypothesis, a rigorous study aimin...
Basement structure and architecture of the Black Sea Basin
Kaymakcı, Nuretdin; Horn, Brian (null; 2018-01-28)
Black Sea consists of two separate back arc basins which opened at different times during the Cretaceous in response to northward subduction of the Neo-Tethys Ocean. The paucity of well data, complex geometries and seismic imaging challenges mean that questions remain regarding the basement architecture though most authors accept that, at least in part, both these basins are floored by oceanic crust, even though there are no magnetic stripes. Interpretation of deep, long offset seismic data (imaging to more...
Age and kinematics of the Burdur Basin: Inferences for the existence of the Fethiye Burdur Fault Zone in SW Anatolia (Turkey)
ÖZKAPTAN, MURAT; Kaymakcı, Nuretdin; Langereis, Cor G.; Gulyuz, Erhan; Özacar, Atilla Arda; UZEL, BORA; SÖZBİLİR, HASAN (Elsevier BV, 2018-10-02)
The Burdur Basin is a late Miocene to Pliocene fluvio-lacustrine basin in SW Anatolia. It is developed within the postulated Fethiye-Burdur Fault Zone, which was argued to be a sinistral strike-slip fault zone developed in response to propagation of the Pliny-Strabo STEP fault into SW Anatolia (Turkey). In order to assess the presence and tectonic characteristics of the fault zone, we conducted a paleomagnetic study in the Burdur basin that involved rock magnetic experiments, Anisotropy of Magnetic Suscepti...
Citation Formats
J.-C. Hippolyte et al., “Age and geodynamic evolution of the Black Sea Basin: Tectonic evidences of rifting in Crimea,” MARINE AND PETROLEUM GEOLOGY, pp. 298–314, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43262.