An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS

Rahimi, Arian
Zorlu, Ozge
Muhtaroglu, Ali
Külah, Haluk
This paper presents a compact energy harvesting system, which consists of an electromagnetic (EM) generator converting ambient low frequency vibrations to DC voltage by using a highly efficient full-wave rectifier in a System-on-Package (Sop). Frequency Up-Conversion technique has been utilized by the in-house EM transducer to harvest energy from very low frequency vibrations (<5 Hz). The interface ASIC is a passive rectifier based on the boot-strap rectification (BSR) technique to decrease the effective threshold voltage of the utilized diodes, attaining a high AC/DC conversion efficiency in a standard 0.35 mu m CMOS process. The energy harvesting system has been tested within a frequency range of 2-10 Hz. The autonomous system with a volume of 21 cm(3), delivers 128 mu W DC power to an 80 mu A load at an external vibration frequency of 2 Hz and 72 mg peak acceleration while a 1.6V DC voltage is generated. The maximum overall power density is measured as 6.1 mu W/cm(3). Furthermore, the reliable operation of a commercially available temperature sensor, as a realistic load, has also been demonstrated by using the energy harvester as a DC supply.


A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations with Tunable Resonance
Türkyılmaz, Serhan; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
This paper presents an electromagnetic (EM) micro-power generator with tunable resonance frequency which can harvest energy from low frequency environmental vibrations. The reported power generator up-converts low frequency environmental vibrations before mechanical-to-electrical energy conversion by utilizing two diaphragms with different resonance frequencies. Power is generated through electromagnetic induction by a magnet attached to the low frequency diaphragm, and a 50 turn, 2.1 Omega coil, and a magn...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
A wideband electromagnetic micro power generator for wireless microsystems
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2007-06-14)
This paper presents a wideband electromagnetic (EM) vibration-to-electrical power generator which can efficiently scavenge energy and generate steady power over a predetermined frequency range. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating cantilever beams. The reported generator covers a wide band of external vibration frequency by implementing a number of serially connected cantilevers in different lengths. The device generates 0.5 mu W continuous p...
A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations
Zorlu, Ozge; Külah, Haluk (2013-11-01)
This paper presents a non-resonant vibration based electromagnetic MEMS energy harvester, which generates energy from low frequency vibrations with low displacement amplitude. The harvester is composed of an energy harvester chip, housing two electroplated copper micro coils realized on parylene cantilevers and a miniature NdFeB magnet with two mechanical barrier arms. The structure uses the mechanical frequency up conversion (mFupC) principle for energy generation. The non-resonant operation is maintained ...
Citation Formats
A. Rahimi, O. Zorlu, A. Muhtaroglu, and H. Külah, “An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS,” SENSORS AND ACTUATORS A-PHYSICAL, pp. 158–166, 2012, Accessed: 00, 2020. [Online]. Available: