Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS
Date
2012-12-01
Author
Rahimi, Arian
Zorlu, Ozge
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
288
views
0
downloads
Cite This
This paper presents a compact energy harvesting system, which consists of an electromagnetic (EM) generator converting ambient low frequency vibrations to DC voltage by using a highly efficient full-wave rectifier in a System-on-Package (Sop). Frequency Up-Conversion technique has been utilized by the in-house EM transducer to harvest energy from very low frequency vibrations (<5 Hz). The interface ASIC is a passive rectifier based on the boot-strap rectification (BSR) technique to decrease the effective threshold voltage of the utilized diodes, attaining a high AC/DC conversion efficiency in a standard 0.35 mu m CMOS process. The energy harvesting system has been tested within a frequency range of 2-10 Hz. The autonomous system with a volume of 21 cm(3), delivers 128 mu W DC power to an 80 mu A load at an external vibration frequency of 2 Hz and 72 mg peak acceleration while a 1.6V DC voltage is generated. The maximum overall power density is measured as 6.1 mu W/cm(3). Furthermore, the reliable operation of a commercially available temperature sensor, as a realistic load, has also been demonstrated by using the energy harvester as a DC supply.
Subject Keywords
Vibration-based energy harvesting
,
Electromagnetic power generation
,
Mechanical frequency up-conversion
,
AC/DC conversion
,
Passive rectification
URI
https://hdl.handle.net/11511/43597
Journal
SENSORS AND ACTUATORS A-PHYSICAL
DOI
https://doi.org/10.1016/j.sna.2012.03.019
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations with Tunable Resonance
Türkyılmaz, Serhan; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
This paper presents an electromagnetic (EM) micro-power generator with tunable resonance frequency which can harvest energy from low frequency environmental vibrations. The reported power generator up-converts low frequency environmental vibrations before mechanical-to-electrical energy conversion by utilizing two diaphragms with different resonance frequencies. Power is generated through electromagnetic induction by a magnet attached to the low frequency diaphragm, and a 50 turn, 2.1 Omega coil, and a magn...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations
Zorlu, Ozge; Külah, Haluk (2013-11-01)
This paper presents a non-resonant vibration based electromagnetic MEMS energy harvester, which generates energy from low frequency vibrations with low displacement amplitude. The harvester is composed of an energy harvester chip, housing two electroplated copper micro coils realized on parylene cantilevers and a miniature NdFeB magnet with two mechanical barrier arms. The structure uses the mechanical frequency up conversion (mFupC) principle for energy generation. The non-resonant operation is maintained ...
A wideband electromagnetic micro power generator for wireless microsystems
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2007-06-14)
This paper presents a wideband electromagnetic (EM) vibration-to-electrical power generator which can efficiently scavenge energy and generate steady power over a predetermined frequency range. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating cantilever beams. The reported generator covers a wide band of external vibration frequency by implementing a number of serially connected cantilevers in different lengths. The device generates 0.5 mu W continuous p...
An electromagnetic micro power generator for low-frequency environmental vibrations
Külah, Haluk (2004-01-01)
This paper presents an electromagnetic (EM) vibrationto-electrical power generator which can efficiently scavenge energy from low-frequency external vibrations. The reported generator up-converts low-frequency environmental vibrations to a much higher frequency through a novel electro-mechanical frequency up-converter using a magnet, and hence provides efficient energy conversion even at low frequencies. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Rahimi, O. Zorlu, A. Muhtaroglu, and H. Külah, “An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS,”
SENSORS AND ACTUATORS A-PHYSICAL
, pp. 158–166, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43597.