Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Failure analysis of thin spray-on liner coated rock cores
Date
2017-09-01
Author
Öztürk, Hasan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
Thin spray-on liners (TSLs) are surface support materials used in mining and civil engineering projects since 1990s with a wide ranging area of application from bolt/mesh support replacement to pillar reinforcement systems. This study presents the investigation of pillar reinforcement capacity of the TSL coated andesite rock core by compression test to mimic pillar reinforcement effect. The uniaxial compressive strength (UCS), modulus of elasticity (E), and energy absorbance capacity of uncoated and 5 mm coated cores having 25, 55, 75, and 100 mm diameters were compared. It was observed that there was no significant improvement in strength or stiffness for the homogenous rock cores coated with < 20% (TSL thickness to core diameter ratio) coverage. The main reinforcement contribution of the TSL was observed on post-failure region of the compression tests. Coated samples had higher energy absorbance (toughness) values than uncoated ones while the coverage of the TSL was increased, toughness enhancement also increased. Therefore, pillar reinforcement capacity of a TSL is a function of both pillar diameter and the TSL thickness. A new equation was found between energy absorbance gain for a given core dimeter and the coated TSL thickness. Researches or design engineers can use this equation as a guide to quantify the energy absorbance gain for a given pillar dimension and TSL thickness. It was found that the common on-site TSL practice of application of a fixed thickness (3-5 mm) for a given diameter does not contribute the toughness enhancement or pillar reinforcement.
Subject Keywords
Coating failures
,
Mechanical testing
,
Energy absorbance
,
Compressive strength
,
Pillar
URI
https://hdl.handle.net/11511/43638
Journal
ENGINEERING FAILURE ANALYSIS
DOI
https://doi.org/10.1016/j.engfailanal.2017.03.024
Collections
Department of Mining Engineering, Article
Suggestions
OpenMETU
Core
FAILURE CHARACTERIZATION OF ROCK ANCHOR BOLTS BY THERMAL CHANGE DETECTION UNDER TENSILE STRENGTH TESTING
Erkayaoğlu, Mustafa; Kırmacı, Alper (2019-09-01)
Rock bolts are widely used in tunnels, underground openings, and also rock slopes to provide support and attach blocks to therock mass in various engineering fields. They have a significant role for the stability of underground structures and natural rock slopes bothin the mining and civil engineering industry. The understanding of the rock bolt behavior under stress conditions plays a key role in the longterm stability and sustainability of rock slopes, nearby structures, and underground openings. The dete...
Operation Quality Indicators for Shovel-Truck Systems at Open-Pit Coal Mines
Voronov, Anton; Voronov, Yuri; Voronov, Artyom; Demirel, Nuray (EDP Sciences; 2019-01-01)
Stripping and mining operations at open-pit coal mines are performed mainly by heavy shovel-truck systems (STS). One of the main problems of the STS is a rather low level of its operation quality, an objective assessment of which is an important step in identifying the causes of low quality and effective ways to improve it. The purpose of assessing the STS operation quality is defined as a functional criterion. The next important step of the assessment is to choose the set of indicators that most characteri...
Experimental investigation of structural systems made of sheathed cold-formed steel wall panels
Pehlivan, Barış Mert; Baran, Eray; Department of Civil Engineering (2023-1-12)
Cold-formed steel (CFS) structural systems are considered to be an innovative and newly developing construction method. Because of advantages such as lower fabrication periods, high strength/weight ratio and ease of construction, CFS structural systems have been used increasingly all around the world, including seismically active areas. Although there have been many studies in the literature, CFS structural systems are relatively new for the civil engineering practice and few existing specifications regardi...
Parameter optimization of steel fiber reinforced high strength concrete by statistical design and analysis of experiments
Ayan, Elif; Saatçioğlu, Ömer; Department of Industrial Engineering (2004)
This thesis illustrates parameter optimization of compressive strength, flexural strength and impact resistance of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, flexural strength and impact resistance of SFRHSC, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fract...
Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm
Saka, M. P. (2007-11-01)
Single layer latticed domes are lightweight and elegant structures that provide cost-effective solutions to cover the large areas without intermediate supports. The topological design of these structures present difficulty due to the fact that the number of joints and members as well as the height of the dome keeps on changing during the design process. This makes it necessary to automate the numbering of joints and members and the computation of the coordinates of joints in the dome. On the other hand the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Öztürk, “Failure analysis of thin spray-on liner coated rock cores,”
ENGINEERING FAILURE ANALYSIS
, pp. 25–33, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43638.