Extended Target Tracking using a Gaussian-Mixture PHD Filter

Granstrom, Karl
Lundquist, Christian
Orguner, Umut
This paper presents a Gaussian-mixture (GM) implementation of the probability hypothesis density (PHD) filter for tracking extended targets. The exact filter requires processing of all possible measurement set partitions, which is generally infeasible to implement. A method is proposed for limiting the number of considered partitions and possible alternatives are discussed. The implementation is used on simulated data and in experiments with real laser data, and the advantage of the filter is illustrated. Suitable remedies are given to handle spatially close targets and target occlusion.


Extended target tracking with a cardinalized probability hypothesis density filter
Orguner, Umut; Granström, Karl (null; 2011-07-08)
This paper presents a cardinalized probability hypothesis density (CPHD) filter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) filter for such targets has already been derived by Mahler and a Gaussian mixture implementation has been proposed recently. This work relaxes the Poisson assumptions of the extended target PHD filter in target and measurement numbers to achieve better estimation performance. A Gaussian mixture implementation is d...
Extended Target Tracking Using Gaussian Processes
Wahlström, Niklas; Özkan, Emre (2015-08-15)
In this paper, we propose using Gaussian processes to track an extended object or group of objects, that generates multiple measurements at each scan. The shape and the kinematics of the object are simultaneously estimated, and the shape is learned online via a Gaussian process. The proposed algorithm is capable of tracking different objects with different shapes within the same surveillance region. The shape of the object is expressed analytically, with well-defined confidence intervals, which can be used ...
Interacting multiple model probabilistic data association filter using random matrices for extended target tracking
Özpak, Ezgi; Orguner, Umut; Department of Electrical and Electronics Engineering (2018)
In this thesis, an Interacting Multiple Model – Probabilistic Data Association (IMM-PDA) filter for tracking extended targets using random matrices is proposed. Unlike the extended target trackers in the literature which use multiple alternative partitionings/clusterings of the set of measurements, the algorithm proposed here considers a single partitioning/clustering of the measurement data which makes it suitable for applications with low computational resources. When the IMM-PDA filter uses clustered mea...
Efficient Bayesian track-before-detect
Tekinalp, Serhat; Alatan, Abdullah Aydın (2006-10-11)
This paper presents a novel Bayesian recursive track-before-detect (TBD) algorithm for detection and tracking of dim targets in optical image sequences. The algorithm eliminates the need for storing past observations by recursively incorporating new data acquired through sensor to the existing information. It calculates the likelihood ratio for optimal detection and estimates target state simultaneously. The technique does not require velocity-matched filtering and hence, it is capable of detecting any targ...
Multi-target tracking using passive doppler measurements
Guldogan, Mehmet B.; Orguner, Umut; Gustafsson, Fredrik (2013-04-26)
In this paper, we analyze the performance of the Gaussian mixture probability hypothesis density (GM-PHD) filter in tracking multiple non-cooperative targets using Doppler-only measurements in a passive sensor network. Clutter, missed detections and multi-static Doppler variances are incorporated into a realistic multi-target scenario. Simulation results show that the GM-PHD filter successfully tracks multiple targets using only Doppler shift measurements in a passive multi-static scenario.
Citation Formats
K. Granstrom, C. Lundquist, and U. Orguner, “Extended Target Tracking using a Gaussian-Mixture PHD Filter,” IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, pp. 3268–3286, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43877.