Zero shot dialogue act classification

Download
2019
Uğur, ̇İlim
Solutions to many natural language processing problems need language-specific labeled data to be learned. However, both the endeavor of compiling a new dataset in a new language and the practice of translating an existing dataset to another language require human expert effort which can not be automated. To learn a solution in a new target language in an automated manner without any extra data, we focus on the known problem of dialogue act classification and propose two solutions that combine existing dialogue act classification methods with machine translation techniques. We implement the proposed solutions Localized Dialogue Act Classifier (LDAC) and Universal Dialogue Act Classifier (UDAC) using two different dialogue act classification methods, and a state-of-the-art machine translation method. We test both solutions on two datasets that are frequently used in testing a dialogue act classification method, namely Switchboard Dialogue Act (SwDA) and Meeting Recorder Dialogue Act (MRDA) datasets, and use German, Spanish and Turkish as the target languages. The results show that the models trained on translated datasets perform worse than their monolingual counterparts, trained on a dataset in its original language. Nonetheless, the results also indicate that acceptably accurate dialogue act classification is achieved on new target languages by LDAC, without having a dataset in that language. These results show that the automated dataset translation idea we propose deserves further exploration.

Suggestions

Identifying textual personal information with artificial neural networks
Demir, Memduh Çağrı; Ertekin Bolelli, Şeyda; Department of Computer Engineering (2019)
Solutions to many natural language processing problems need language-specific labeled data to be learned. However, both the endeavor of compiling a new dataset in a new language and the practice of translating an existing dataset to another language require human expert effort which can not be automated. To learn a solution in a new target language in an automated manner without any extra data, we focus on the known problem of dialogue act classification and propose two solutions that combine existing dialo...
Deep learning approach for laboratory mice grimace scaling
Eral, Mustafa; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2016)
Deep learning is extremely attractive research topic in pattern recognition and machine learning areas. Applications in speech recognition, natural language processing, and machine vision fields gained huge acceleration in performance by employing deep learning. In this thesis, deep learning is used for medical purposes in order to scale pain degree of drug stimulated mice by examining facial grimace. For this purpose each frame in the videos in the training set were scaled manually by experts according to ...
Learning semi-supervised nonlinear embeddings for domain-adaptive pattern recognition
Vural, Elif (null; 2019-05-20)
We study the problem of learning nonlinear data embeddings in order to obtain representations for efficient and domain-invariant recognition of visual patterns. Given observations of a training set of patterns from different classes in two different domains, we propose a method to learn a nonlinear mapping of the data samples from different domains into a common domain. The nonlinear mapping is learnt such that the class means of different domains are mapped to nearby points in the common domain in order to...
Closed-form sample probing for training generative models in zero-shot learning
Çetin, Samet; Cinbiş, Ramazan Gökberk; Department of Computer Engineering (2022-2-10)
Generative modeling based approaches have led to significant advances in generalized zero-shot learning over the past few-years. These approaches typically aim to learn a conditional generator that synthesizes training samples of classes conditioned on class embeddings, such as attribute based class definitions. The final zero-shot learning model can then be obtained by training a supervised classification model over the real and/or synthesized training samples of seen and unseen classes, combined. Therefor...
Simple and complex behavior learning using behavior hidden Markov Model and CobART
Seyhan, Seyit Sabri; Alpaslan, Ferda Nur; Department of Computer Engineering (2013)
In this thesis, behavior learning and generation models are proposed for simple and complex behaviors of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models have common phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are categorized using correlation based...
Citation Formats
̇. Uğur, “Zero shot dialogue act classification,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Computer Engineering., Middle East Technical University, 2019.