Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Pseudo-dynamic testing of a concrete gravity dam
Date
2015-09-01
Author
Aldemir, Alper
Binici, Barış
Arıcı, Yalın
Kurç, Özgür
Canbay, Erdem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Inspired from the simplified single degree of freedom modeling approach used in the preliminary design of concrete gravity dams, a pseudo-dynamic testing method was devised for the seismic testing of a concrete gravity dam section. The test specimen was a 1/75 scaled section of the 120-m-high monolith of the Melen Dam, one of the highest concrete gravity dams to be built in Turkey. The single degree of freedom idealization of the dam section was validated in the first stage of the study using numerical simulations including the dam-reservoir interaction. Afterwards, pseudo-dynamic testing was conducted on the specimen using three ground motions corresponding to different hazard levels. Lateral displacement and base shear demands were measured. The crack propagation at the base of the dam was monitored with the measurement of the crack widths and the base sliding displacements. After the pseudo-dynamic loading, a static pushover test was conducted to determine the reserve capacity of the test specimen. Despite major cracking at the base of the monolith, neither significant sliding nor a stability problem that might jeopardize the stability of the dam was observed. Copyright (c) 2015 John Wiley & Sons, Ltd.
Subject Keywords
Pseudo-dynamic testing
,
Concrete gravity dams
,
Cracking
,
Stability
URI
https://hdl.handle.net/11511/44371
Journal
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
DOI
https://doi.org/10.1002/eqe.2553
Collections
Department of Civil Engineering, Article