Real-time simulation of soil–tool interaction using advanced soil models

Download
2019
Gürbüz, Mücahit
Excavation work is one of the main elements needed in construction fields. To meet such a huge demand, a large number of excavators are working all over the globe. In addition, researchers and companies put enormous efforts to develop more efficient excavator models. With the advancement of technology, autonomous systems have become popular and ideal way to upgrade machines for faster, cheaper and safer production. Not surprisingly, there have been many attempts to develop fully autonomous robotic excavation systems and this has become one of the trending topics in the earth-moving industry. There are some key challenges in developing an autonomous excavation system. For example, accurate and fast prediction of resisting soil forces on the excavator bucket plays a crucial role in developing unmanned excavator systems. Current studies provide unrealistic and/or computationally expensive soil-tool interaction models. This study represents a new method to solve the interaction of excavator bucket and soil in real-time with acceptable accuracy. Through the developed accurate real-time soil-tool interaction simulation, it is also aimed to make further progress in virtual reality systems requiring real-time simulations, cabin simulators, and computer games.

Suggestions

Comprehensive Evaluation of AIMS Texture, Angularity, and Dimension Measurements
Mahmoud, Enad; Gates, Leslie; Masad, Eyad; Erdoğan, Sinan Turhan; Garboczi, Edward (American Society of Civil Engineers (ASCE), 2010-04-01)
Aggregates are the most widely used construction materials in the world in structures built from both asphaltic and portland cement concrete composites. The performance of these composites is affected by aggregate shape characteristics (e.g., angularity, texture, and dimensions). The aggregate imaging system (AIMS) is a computer automated system that was developed to measure aggregate shape characteristics using digital camera images of aggregates. This paper addresses four issues concerning AIMS measuremen...
Numerical comparison of retaining system behavior for a deep excavation case with and without ground improvement
Maghsoudloo, Arash; Ahmadinaghadeh, Reza; Toker, Nabi Kartal (2012-11-02)
In the construction of deep excavations in urban areas, the safety of adjacent ground and structures becomes major concern for engineers. In soft clays, the main reason for occurrence of large deflections of soil support systems in excavations is instability of the excavation base. This paper will focus on analyzing and comparing design of an excavation with and without jet grout improvement applied to the excavation base by employing the finite-element code PLAXIS. A well-documented case study is analyzed,...
Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls
Turgay, Tahsin; Durmus, Meril Cigdem; Binici, Barış; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2014-10-01)
Buildings with masonry infill walls (MIWs) in reinforced concrete (RC) frames are commonly used all around the world. It is well known that infill walls may affect the strength, stiffness, and displacement ductility of the structural system. Different approaches have been adopted in different codes and guidelines to consider the stiffness and strength contribution of MIWs on RC frame behavior. This study compares the ability of the existing guidelines to estimate stiffness, strength, and deformability of RC...
DYNAMIC COGNITIVE FORCE CONTROL FOR AN AUTOMATIC LAND EXCAVATION ROBOT
Bodur, M; Zontul, H; Ersak, Aydın; KOIVO, AJ; YURTSEVEN, HO; KOCAOGLAN, E; PASAMEHMETOGLU, G (1994-04-14)
The automation of the land excavation machines can find applications in the excavation of soil in both terrestrial and planetary mining and construction. The automation requires planning at different levels such as task and trajectory pre-planning, and the automatic execution of these pre-planned tasks. In the execution of the pre-planned digging trajectories, the unexpected soil properties along the trajectory raises problems such as excessive ram-forces that may harm the machine, or cannot be applied beca...
Improvement of expansive soils by using cement kiln dust
Yılmaz, Mehmet Kağan; Çokça, Erdal; Department of Civil Engineering (2014)
Expansive soils are a worldwide problem that poses several challenges for civil engineers. Such soils swell when given an access to water and shrink when they dry out. The most common and economical method for stabilizing these soils is using admixtures that prevent volume changes. In this study, effect of using cement kiln dust (CKD) in reducing the swelling potential was examined. The expansive soil was prepared in the laboratory by mixing kaolinite and bentonite. Cement kiln dust (CKD) was added to the s...
Citation Formats
M. Gürbüz, “Real-time simulation of soil–tool interaction using advanced soil models,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Civil Engineering., Middle East Technical University, 2019.