Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Enhancement of optical parametric amplification in microresonators via gain medium parameter selection and mean cavity wall reflectivity adjustment
Date
2020-09-01
Author
Asirim, Ozum Emre
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
This paper computationally investigates the effect of the polarization decay rate (gamma), and the peak resonance frequency (f(0)) on optical parametric amplification inside a low-loss micro resonator. It is found that, for lower values of the polarization decay rate and the peak resonance frequency, the magnitude of amplification can be significantly higher. However, it was also observed that beyond a certain threshold value of the polarization decay rate, the gain factor of the amplification sharply reduces to a negligible value. This suggests that the polarization decay rate of a material has a more profound effect on wave attenuation for the case of nonlinear wave propagation as compared to the case of linear wave propagation. This gain enhancing effect of the low polarization decay rate requires the resonator walls to be highly reflective. We found that below a certain value of the mean reflection coefficient of the resonator walls, the amplification becomes insignificant regardless of the value of the polarization decay rate. Numerical simulations are performed using the finite difference time domain method and the resulting gain variations are plotted and tabulated with respect to the polarization decay rate, peak resonance frequency, and the mean reflection coefficient of the micro resonator to illustrate this drastic gain enhancement.
Subject Keywords
Atomic and Molecular Physics, and Optics
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/44509
Journal
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
DOI
https://doi.org/10.1088/1361-6455/ab8947
Collections
Department of Electrical and Electronics Engineering, Article