Study on the long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors

2005-10-01
Aslan, B
Turan, Raşit
Liu, HC
The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effect of different effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collision. Photoresponse measurements on Si1-xGex/Si heterojunction internal photoemission (HIP) infrared photodetectors (IP) have shown that they are fit well by the theory. Qualitative model describing the mechanisms of photocurrent generation in our structures are presented. We also study the effect of a double barrier on the photoresponse spectrum of a SiGe/Si HIP IP. It has been shown that the performance of our devices depends significantly on the applied bias and the operating temperature; therefore, their cut-off wavelengths can be tuned to the desired region by changing the potential difference across the device and/or changing the device temperature. The barrier heights (correspondingly the cut-off wavelengths) of the samples have been determined from their IP spectra by using the extended model which has the wavelength and doping concentration dependent free carrier absorption parameters. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.
INFRARED PHYSICS & TECHNOLOGY

Suggestions

On the theory of internal photoemission in heterojunctions
Aslan, B; Turan, Raşit (Elsevier BV, 2005-08-01)
The theory of internal photoemission in semiconductor heterojunctions has been reviewed and the existing model has been extended by incorporating the effects of the difference in the effective masses in the active region and the substrate, non spherical-nonparabolic bands, and the energy loss per collisions. This complete model has been applied to describe the experimental results obtained from Si1-xGex/Si heterojunction infrared photodetectors. The barrier heights (correspondingly the cut-off wavelengths) ...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications
Sabah, Cumali (Springer Science and Business Media LLC, 2016-05-01)
A new fishnet-based waveguide metamaterial structure for the microwave region is introduced and investigated both numerically and experimentally. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong metamaterial behavior (such as negative material parameters: i.e. negative permittivity, negative permeability, and negative index of refraction) at the resonance. Only one single slab is used in the simulation and experiment which provides a reduction in the number of...
Density functional theory study on the structural properties and energetics of Zn(m)Te(n) microclusters
Pekoez, Rengin; Erkoç, Şakir (Elsevier BV, 2008-08-01)
Density functional theory calculations with B3LYP exchange-correlation functional using CEP-121G basis set have been carried out in order to elucidate the structural properties and energetics of neutral zinc telluride clusters, Zn(m)Te(n)(m + n <= 6), in their ground states. The geometric structures, binding energies, vibrational frequencies and infrared intensities, Mulliken charges on atoms, HOMO and LUMO energies, the most possible dissociation channels and their corresponding energies for the clusters h...
Unified theory of linear instability of anisotropic surfaces and interfaces under capillary, electrostatic, and elastostatic forces: The regrowth of epitaxial amorphous silicon
Ogurtani, Tarik Omer (American Physical Society (APS), 2006-10-01)
The first-order unified linear instability analysis (LISA) of the governing equation for the evolution of surfaces and interfaces under capillary, electromigration (EM), and elastostatic forces is developed. A formal treatment of the thermomigration (Soret effect) driven by the nonuniform temperature distribution caused by exothermic phase transformation (growth) at the surface and interfacial layers is presented and its apparent influence on the capillary force in connection with the stability is also esta...
Citation Formats
B. Aslan, R. Turan, and H. Liu, “Study on the long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors,” INFRARED PHYSICS & TECHNOLOGY, pp. 195–205, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47236.