Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Mini autonomous car architecture for urban driving scenarios
Download
index.pdf
Date
2019
Author
Karabulut, Gökhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Autonomous cars capable of driving in city traffic have been long studied in architectures decomposed into perception, planning, and control components. Recent advances in deep learning techniques considerably contributed to the perception component of this approach. These techniques also laid the groundwork for the progress of other approaches such as end-to-end learning of steering commands and driving affordances from camera images. Though these approaches are promising to simplify the overall architecture, the decomposed architectures are found more persuasive, constituting the majority of today's state-of-the-art, market-oriented driverless cars. However, studies on small-scale autonomous cars, which are considered low-cost and rapid prototyping platforms, are not on a par with research on the modern decomposed architectures. These studies often remain limited to end-to-end approaches or resort to traditional image processing techniques in over-simplified traffic scenarios. In this thesis, we present a decomposed architecture for small-scale cars covering extended traffic scenarios with seven traffic signs, traffic lights, lane changes, cloverleaf interchange, pedestrian crossings, and parking. To realize this architecture, we created segmentation and classification datasets. We trained two deep learning models for learning lane semantics and classifying traffic signs and lights. We developed a behavior planner to decide on the best behavior primitives for traffic scenes. Based on these behavior primitives, we implemented a trajectory planner to find optimal trajectories along the lanes and a controller to follow these trajectories. With our novel lane segmentation scheme, 97% accurate classifier, robust planner and controller algorithms, we achieved successful drives on simulated and real courses.
Subject Keywords
Automated vehicles.
,
Keywords: Autonomous car
,
traffic scene parsing
,
traffic sign classification
,
optimal trajectory planning
,
path tracking.
URI
http://etd.lib.metu.edu.tr/upload/12624334/index.pdf
https://hdl.handle.net/11511/44526
Collections
Graduate School of Natural and Applied Sciences, Thesis