Investigation of SO2 removal characteristics with limestone under oxycombustion conditions

Avşaroğlu, Sevil
One of the technologies to increase combustion efficiency and decrease CO2 and other emissions is Oxy-Fuel Combustion. Combustion efficiency is higher and emissions are lower when the oxygen concentration of air is higher. In this thesis different characteristics of two indigenous Turkish lignites are investigated by Thermal Gravimetric Analysis (TGA). Pyrolysis is carried out under both N2 and CO2 atmospheres and combustion characteristics is also examined. CO2 acts as an inert gas at lower temperatures. Three temperature regions in pyrolysis are due to moisture release, volatile matter release and calcite decomposition in N2 and char gasification in CO2 atmosphere. In combustion study, the third temperature region shows the oxidation of char. Due to Turkish lignites having high sulphur content, capturing of SO2 emissions with limestone addition during oxy-combustion is studied. The studies showed the main effect of CO2 concentration is to determine whether the limestone will undergo calcination (indirect sulfation) or not (direct sulfation) at the same temperature. Generating oxycombustion conditions that allow indirect sulfation, results in a more effective use of limestone to capture SO2. At the end of eight-hour period, the sulfur conversion of direct sulfation at 800 °C was 30%. However, for the indirect sulfation sulfur conversion was 58%. For 15% CO2, sulfur conversion doubles at higher temperatures due to calcination and indirect sulfation of limestone. In sulfation studies, the other parameters that are examined were temperature, SO2 concentration in the gas mixture, particle size and limestone type. When Çan and Çumra limestone are compared, calcination of these limestones occurred at the same condition. However, Çan limestone resulted in higher sulfur conversion values (about 60%) due to higher surface area. Dolomite results showed lower sulfur conversions (about 12% at 800 °C, and 28-37% at 900 °C) as compared to limestone samples.


Study of water-oil emulsion combustion in large pilot power plants for fine particle matter emission reduction
Allouis, Christophe Gerard; L'Insalata, A.; Fortunato, L.; Saponaro, A.; Beretta, F. (2007-04-01)
The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling ...
Combustion Models for Industrial Applications (COMBINA)
Uzol, Oğuz(2013-2-28)
Combustion processes are an essential component of energy conversion and their accurate modeling is required if the objectives of reduction of fuel consumption and emissions are to be realized. Meeting these requirements will involve a substantial effort, in particular towards the development and availability of accurate and reliable simulation tools for reactive flows and more experimental data. In the COMBINA project, collaboration between a CFD software developing SME, which is coordinating this project,...
Investigation of the effect of oxidation filters on the particulate emissions of diesel engines
Cerit, R. Ersen; Bayka, Ahmet Demir; Department of Mechanical Engineering (2006)
Oxidation filters are used to decrease particulate emissions commonly. In this study, design of a particulate trap to produce an alternative, low cost filter has been aimed. An experimental setup has been installed according to standards to carry out tests of these designed filters. Electronic measurement and control systems have been attached to this setup to increase efficiency of experiments. Two filter designs have been used in the experiments. First design consists of aluminum wire cloth. Second design...
Monitoring of fuel consumption and aromatics formation in a kerosene spray flame as characterized by fluorescence spectroscopy
Allouis, Christophe Gerard; Apicella, B; Barbella, R; Beretta, F; Ciajolo, A; Tregrossi, A (2003-06-01)
The large presence of aromatic compounds in distillate fossil fuels should allow, in line of principle, to follow the fuel consumption and/or the presence of unburned fuel in a high temperature environment like a burner or the exhaust of combustion systems by exploiting the high fluorescence emission of aromatic fuel components. To this aim an UV-excited fluorescence source has to be used since the aromatic fuel components are strongly fluorescing in the UV region of the emission spectrum.
Modeling and design of a non-thermal plasma reactor for CO2 dissociation
Ahmed, Humayun; Taylan, Onur; Sustainable Environment and Energy Systems (2017-1)
The requirement of energy constantly increases with time, and one of the major sources of energy is fossil fuels which release carbon dioxide upon combustion. Environmentally, CO2 is a greenhouse gas which has had a tremendous impact on the Earth’s climate over the last few decades and the urges serious mitigation methods for the long-term sustainability of the Earth’s climate and ecosystem. One mitigation method is the dissociation of CO2 to produce synthesis gas which can be used to produce alternative hy...
Citation Formats
S. Avşaroğlu, “Investigation of SO2 removal characteristics with limestone under oxycombustion conditions,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Environmental Engineering., Middle East Technical University, 2019.