Microwave-Assisted Heavy Oil Production: An Experimental Approach

Hascakir, Berna
Acar, Cagdas
Akın, Serhat
Conventional enhanced oil recovery (EOR) methods, Such as steam injection, are Usually not cost-effective for deep wells and wells produced from thin pay zones, because of excessive heat loss to the overburden. For such wells, minimizing heat losses can be achieved using microwave heating. In this study, the feasibility of this method was investigated. Heavy oil samples from conceptual reservoirs (Bati Raman, 9.5 degrees API; Garzan, 12 degrees API; and Camurlu, 18 degrees API) southeast Turkey were used. Using a novel graphite core holder packed with crushed limestone premixed with crude oil and water, effects of operational parameters, such as heating time and waiting period, as well as rock and fluid properties, such as porosity, permeability, wettability, salinity, and initial water saturation, were studied. It was found that high-salinity water promotes oil production during microwave-assisted production. High water saturations lead to higher oil productions regardless of the viscosity of the oil. It was finally concluded that microwave heating could be used to stimulate heavy oil production.


Microwave assisted gravity drainage of heavy oils
Hascakir, Berna; Acar, Cagdas; Schlumberger, Schlumberger; Demiral, Birol; Akın, Serhat (null; 2008-12-01)
Conventional EOR methods like steam-injection are usually not cost effective for deep wells and wells producing from thin pay zones, due to excessive heat loss to the overburden. For such wells minimizing heat losses can be achieved by using microwave heating assisted gravity drainage. In this study, the feasibility of this method was investigated. Heavy oil samples from conceptual reservoirs (Bati Raman (9.5 API), Garzan (12 API) and Camurlu (18 API)) in south east Turkey were used. Using a novel graphite ...
Analysis of finite element method solution of sinusoidal buckling behaviour of drill string in vertical, directional, and horizontal wellbores and comparison with analytical solutions
Cebeci, Mehmet; Kök, Mustafa Verşan; Gücüyener, İ. Hakkı; Department of Petroleum and Natural Gas Engineering (2017)
The buckling of drill string in oil, gas and geothermal wells is a critical problem that has been of interest to many researchers in the industry. Prevention of buckling of drill string is important since it may negatively affect the drilling operations. When buckling of drill string occurs, it may cause deviation control problems while drilling, inefficient load transfer to the bit, excessive torque values, even pipe failures due to fatigue. The first rigorous treatment of stability of drill strings for ve...
Random walk particle modelling of polymer injection using matlab reservoir simulation toolbox
Mamak, Gökhan; Durgut, İsmail; Department of Petroleum and Natural Gas Engineering (2017)
Enhanced oil recovery (EOR) is essential to increase the maximum recoverable oil by natural means of production. Having chosen an EOR method, the effectiveness of the method should be analyzed before applying to a reservoir since the methods are generally costly. Polymer injection is a chemical EOR process, where the injected polymer with water increases the water viscosity, and help increasing the sweep efficiency in the reservoir. In order to model the effects of polymer injection, the random-walk particl...
Thermal analysis applications in fossil fuel science - Literature survey
Kök, Mustafa Verşan (2002-01-01)
In this study, instances where thermal analysis techniques ( differential scanning calorimetry, thermogravimetry, differential thermal analysis, etc.) have been applied for fossil fuel characterisation and kinetics are reviewed. The scientific results presented clearly showed that thermal analysis is a well-established technique used in fossil fuel research area. The literature survey showed that thermal methods were important not only theoretically but also from a practical point of view.
Ozgur, Emre; Miller, Sharon Falcone; Miller, Bruce G.; Kök, Mustafa Verşan (2012-01-01)
The effect of co-firing of biomass fuels with oil shale on combustion was investigated Thermogravimetric analysis and differential scanning calorimetry were the tools used to perform the investigation. Since the combustion of biomass is highly exothermic, biomass fuels can serve as an appropriate fuel feedstock. Biomass fuels producing much volatile matter and containing less cellulose are good candidates for co-firing with oil shale. The biomass samples used in the study were hazelnut shell, wheat bran, po...
Citation Formats
B. Hascakir, C. Acar, and S. Akın, “Microwave-Assisted Heavy Oil Production: An Experimental Approach,” ENERGY & FUELS, pp. 6033–6039, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45007.