Improving Computational Efficiency of Bat-Inspired Algorithm in Optimal Structural Design

Bat-inspired (BI) algorithm is a recent metaheuristic optimization technique that simulates echolocation behavior of bats in seeking a design space. Along the same line with almost all metaheuristics, this algorithm also entails a large number of time-consuming structural analyses in structural design optimization applications. This study is focused on improving computational efficiency of the BI algorithm in optimum structural design. The number of structural analyses required by BI algorithm in the course of design optimization is reduced considerably by incorporating an upper bound strategy (UBS) into the solution procedure. The performance of the resulting algorithm, i.e. UBS integrated BI algorithm (UBI), is evaluated in discrete sizing optimization of large-scale steel skeletal structures designed for minimum weight according to American Institute of Steel Construction-Allowable Stress Design provisions. The numerical results verify that the UBI results in a significant gain in the computational efficiency of the standard algorithm.


Improving the performance of simulated annealing in structural optimization
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-03-01)
This study aims at improving the performance of simulated annealing (SA) search technique in real-size structural optimization applications with practical design considerations. It is noted that a standard SA algorithm usually fails to produce acceptable solutions to such problems associated with its poor convergence characteristics and incongruity with theoretical considerations. In the paper novel approaches are developed and incorporated into the standard SA algorithm to eliminate the observed drawbacks ...
A bat-inspired algorithm for structural optimization
Hasançebi, Oğuzhan; Pekcan, Onur (Elsevier BV, 2013-11-01)
Bat-inspired (BI) search is a recently developed numerical optimization technique that makes use of echolocation behavior of bats in seeking a design space. This study intends to explore capabilities and potentials of this newly developed method in the realm of structural optimization. A novel algorithm is developed that employs basic principles of this method for structural optimization problems specifically. Performance of the proposed algorithm is measured using one benchmark as well as three practical t...
Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures
Hasançebi, Oğuzhan; Dogan, E.; Erdal, F.; Saka, M. P. (2009-03-01)
In recent years a number of metaheuristic search techniques have been widely used in developing structural optimization algorithms. Amongst these techniques are genetic algorithms, simulated annealing, evolution strategies, particle swarm optimizer, tabu search, ant colony optimization and harmony search. The primary goal of this paper is to objectively evaluate the performance of abovementioned seven techniques in optimum design of pin jointed structures. First, a verification of the algorithms used to imp...
Optimum Design of Geodesic Steel Domes Under Code Provisions using Metaheuristic Techniques
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-06-01)
Metaheuristic search techniques strongly employ randomized decisions while searching for solutions to structural optimization problems. These techniques play an increasingly important role for practically solving hard combinatorial problems from various domains. Over the past few years there has been considerable success in developing metaheuristic search algorithms as well as randomized systematic search methods for obtaining solutions to discrete programming problems. This paper examines minimum weight de...
Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization
Dogan, E.; Saka, M. P. (2012-04-01)
Particle Swarm method based optimum design algorithm for unbraced steel frames is presented. The Particle Swarm method is a numerical optimization technique that simulates the social behavior of birds, fishes and bugs. In nature fish school, birds flock and bugs swarm not only for reproduction but for other reasons such as finding food and escaping predators. Similar to birds seek to find food, the optimum design process seeks to find the optimum solution. In the particle swarm optimization each particle in...
Citation Formats
O. Hasançebi, “Improving Computational Efficiency of Bat-Inspired Algorithm in Optimal Structural Design,” ADVANCES IN STRUCTURAL ENGINEERING, pp. 1003–1015, 2015, Accessed: 00, 2020. [Online]. Available: