An efficient HW&SW design of H.264 video compression, storage and playback on FPGA devices for hand-held thermal imaging systems

2017-04-11
Gunay, Omer
Ozsarac, Ismail
Kamışlı, Fatih
Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H. 264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H. 264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than % 40 of CYCLONE V 5CEFA7 FPGA resources on average.

Suggestions

Coding algorithms for 3DTV - A survey
Smolic, Aljoscha; Mueller, Karsten; Stefanoski, Nikolce; Ostermann, Joern; Gotchev, Atanas; Akar, Gözde; Triantafyllidis, Georgios; Koz, Alper (2007-11-01)
Research efforts on 3DTV technology have been strengthened worldwide recently, covering the whole media processing chain from capture to display. Different 3DTV systems rely on different 3-D scene representations that integrate various types of data. Efficient coding of these data is crucial-for the success of 3DTV. Compression of pixel-type data including stereo video, multiview video, and associated depth or disparity maps extends available principles of classical video coding. Powerful algorithms and ope...
A multimodal approach for individual tracking of people and their belongings
Beyan, Çiğdem; Temizel, Alptekin (2015-04-01)
In this study, a fully automatic surveillance system for indoor environments which is capable of tracking multiple objects using both visible and thermal band images is proposed. These two modalities are fused to track people and the objects they carry separately using their heat signatures and the owners of the belongings are determined. Fusion of complementary information from different modalities (for example, thermal images are not affected by shadows and there is no thermal reflection or halo effect in...
Flexible querying using structural and event based multimodal video data model
Oztarak, Hakan; Yazıcı, Adnan (2006-01-01)
Investments on multimedia technology enable us to store many more reflections of the real world in digital world as videos so that we carry a lot of information to the digital world directly. In order to store and efficiently query this information, a video database system (VDBS) is necessary. We propose a structural, event based and multimodal (SEBM) video data model which supports three different modalities that are visual, auditory and textual modalities for VDBSs and we can dissolve these three modaliti...
Fine‐grained recognition of maritime vessels and land vehicles by deep feature embedding
Solmaz, Berkan; Gundogdu, Erhan; Yucesoy, Veysel; Koc, Aykut; Alatan, Abdullah Aydın (2018-12-01)
Recent advances in large-scale image and video analysis have empowered the potential capabilities of visual surveillance systems. In particular, deep learning-based approaches bring in substantial benefits in solving certain computer vision problems such as fine-grained object recognition. Here, the authors mainly concentrate on classification and identification of maritime vessels and land vehicles, which are the key constituents of visual surveillance systems. Employing publicly available data sets for ma...
A novel optical flow-based representation for temporal video segmentation
Akpınar, Samet; Alpaslan, Ferda Nur (2017-01-01)
Temporal video segmentation is a field of multimedia research enabling us to temporally split video data into semantically coherent scenes. In order to develop methods challenging temporal video segmentation, detecting scene boundaries is one of the more widely used approaches. As a result, representation of temporal information becomes important. We propose a new temporal video segment representation to formalize video scenes as a sequence of temporal motion change information. The idea here is that some s...
Citation Formats
O. Gunay, I. Ozsarac, and F. Kamışlı, “An efficient HW&SW design of H.264 video compression, storage and playback on FPGA devices for hand-held thermal imaging systems,” 2017, vol. 10223, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45152.