Poincaré’s philosophy of mathematics and the impossibilty of building a new arithmetic

Download
2019
Akçagüner, Koray
This thesis examines Poincaré’s philosophy of mathematics, and in particular, his rejection of the possibility of building a new arithmetic. The invention of non-Euclidean geometries forced Kant’s philosophy of mathematics to change, leading thinkers to doubt the idea that Euclidean postulates are synthetic a priori judgments. Logicism and formalism have risen during this period, and these schools aimed to ground mathematics on a basis other than the one that was laid down by Kant. With regards to the foundations of mathematics, Poincaré adopted Kant’s philosophy and remained an intuitionist, though naturally, he had to make significant changes in Kant’s thought. Poincaré argued that the branch of mathematics that contains synthetic a priori judgments is arithmetic, which is completely independent of experience and therefore pure. What gives arithmetic its object of knowledge and justifies the use of its fundamental principles is not experience, but a pure intuition. On the other hand, Poincaré claimed that our ideas about space and the geometric postulates are not imposed upon us, that they are not known a priori but are rather conventions, “definitions in disguise”. The role experience plays in the foundations of geometry has given us the possibility of building non-Euclidean geometries. However, since arithmetic is completely independent of experience, it is not possible for a change similar to that in geometry to take place in arithmetic, which would alter its basic concepts or principles that we consider to be true. It is argued in this thesis that it is possible to develop the intuition which lies at the basis of arithmetic and this may become the starting point of a new arithmetic. It will be shown that this is what Cantor has actually achieved when establishing transfinite ordinal arithmetic.

Suggestions

Philosophical implications of cantor’s set theory
Şahin, Şafak; Grünberg, David; Department of Philosophy (2020-10-13)
This thesis is devoted to examining Georg Cantor’s understanding of infinity and his philosophy of mathematics. Even though Aristotle differentiated the concept of infinity as potential infinite and actual infinite, he argued against the existence of actual infinity and accepted only the existence of potential infinity. With the effect of this distinction, the impossibility of actual infinity was regarded as the fundamental principle in the history of the concept of infinity. Cantor was the first think...
Isomorphism classes of elliptic curves over finite fields of characteristic two
Kırlar, Barış Bülent; Akyıldız, Ersan; Department of Mathematics (2005)
In this thesis, the work of Menezes on the isomorphism classes of elliptic curves over finite fields of characteristic two is studied. Basic definitions and some facts of the elliptic curves required in this context are reviewed and group structure of elliptic curves are constructed. A fairly detailed investigation is made for the isomorphism classes of elliptic curves due to Menezes and Schoof. This work plays an important role in Elliptic Curve Digital Signature Algorithm. In this context, those isomorphi...
Mathematical ontology the question of the mathematical source of objectivity
Dorrikhteh, Omid; Grünberg, David; Department of Philosophy (2019)
This thesis traces the source of mathematical objectivity, as an approach to justify mathematical properties to be real, through how our mind and language were evolved. In the mirror of the indispensability argument, and the unreasonable effectiveness of mathematics, it will be argued that the reason why the world and the mind exhibit ontologically similar structures (and properties) is because they have the same ontological origin. Accordingly, it will be shown that (1) why/how that “the world and the mind...
POINCARE CHAOS FOR A HYPERBOLIC QUASILINEAR SYSTEM
Akhmet, Marat; Tleubergenova, M.; Zhamanshin, A. (Mathematical Notes, 2019-01-01)
The existence of unpredictable motions in systems of quasilinear differential equations with hyperbolic linear part is rigorously proved. We make use of the topology of uniform convergence on compact sets and the contraction mapping principle to prove the existence of unpredictable motions. Appropriate examples with simulations that support the theoretical results are provided.
Shape-invariance approach and Hamiltonian hierarchy method on the Woods-Saxon potential for l not equal 0 states
Berkdemir, Cueneyt; BERKDEMİR, Ayşe; Sever, Ramazan (Springer Science and Business Media LLC, 2008-03-01)
An analytically solvable Woods-Saxon potential for l not equal 0 states is presented within the framework of Supersymmetric Quantum Mechanics formalism. The shape-invariance approach and Hamiltonian hierarchy method are included in calculations by means of a translation of parameters. The approximate energy spectrum of this potential is obtained for l not equal 0 states, applying the Woods-Saxon square approximation to the centrifugal barrier term of the Schrodinger equation.
Citation Formats
K. Akçagüner, “Poincaré’s philosophy of mathematics and the impossibilty of building a new arithmetic,” Thesis (M.S.) -- Graduate School of Social Sciences. Philosophy., Middle East Technical University, 2019.