Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Mesh segmentation from sparse face labels using graph convolutional neural networks.
Download
index.pdf
Date
2020
Author
Sever, Önder İlke
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The marked improvements in deep learning influence almost every area of computer science. The mesh segmentation problem in computer graphics has been an active research area and keep abreast of the trend of deep learning developments. The mesh segmentation has a central role in multiple application areas for 3D objects. It is chiefly used to produce the object structure in order to manipulate the object or analyze the components of it. These operations are primitive, and that primitiveness causes a variety of application areas. The variation in application areas induce a variety of priority deviations over time and memory usage. In this thesis, we solve the mesh segmentation problem by using Graph Convolutional Neural Networks. Our method uses a semi-supervised approach for which the mesh objects are sparsely labeled, and the results are the formed segments. We consider a mesh object as a graph by using their connectedness over the faces, and having the mesh in 3D lets us create geometrically logical features for our network. Using the neighborhood information is maintained by the Graph Convolutional Neural Networks, which is a pretty new concept, and the application on the sparsely labeled mesh segmentation is novel to our work. By using the briefly summarized method, we reach competitive results compared to state-of-art mesh segmentation methods.
Subject Keywords
Neural networks (Computer science).
,
Keywords: 3D
,
mesh
,
segmentation
,
semi-supervised learning
,
graph convolutional neural networks
URI
http://etd.lib.metu.edu.tr/upload/12625266/index.pdf
https://hdl.handle.net/11511/45555
Collections
Graduate School of Natural and Applied Sciences, Thesis