Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling the effect of SCR denox unit on diesel engine performance
Download
index.pdf
Date
2020
Author
Pelen, Pelsu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
158
downloads
Cite This
The design of the internal combustion engines and the aftertreatment systems cannot be considered independently since imposing an aftertreatment equipment into the exhaust system brings extra backpressure which in turn decreases the engine efficiency and increases the fuel consumption and CO2 emission. In the present study, the existing 3D monolith reactor model in COMSOL Multiphysics® applications is modified to account for an SCR deNOx unit having 600 cpsi cell density by using exhaust mass flow rate and temperature data of a SCANIA 9-liter off-road Diesel engine. The model is verified against a published experimental work. While performing analyses, 98% NOx conversion is aimed. Results showed that when the engine operates at 2100 rpm, 29.1 kPa backpressure is observed in the SCR deNOx unit having 600 cpsi cell density and 20 cm diameter. It is seen that backpressure decreased down to 4.9 kPa by increasing the SCR deNOx unit diameter to 25 cm. Furthermore, it is observed that 50% more backpressure is formed to obtain only 1% more NOx conversion in the examined SCR deNOx unit conditions. When the engine efficiency is considered, backpressure caused by SCR unit reduces the net work that can be obtained from the engine. If the engine compression ratio is increased to enhance the net work, the efficiency increases however higher NOx emission is observed due to higher temperatures arising from higher compression ratios.
Subject Keywords
Exhaust systems.
,
NOx Emission
,
Selective Catalytic Reduction
,
SCR
,
DeNOx
,
Aftertreatment System
,
Exhaust System
,
Pressure Drop in Monolith Channels
,
Exhaust Backpressure
URI
http://etd.lib.metu.edu.tr/upload/12625412/index.pdf
https://hdl.handle.net/11511/45645
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Validation of MISES 2 D Boundary Layer Code for High Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (2007-01-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage, and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed which can be executed quickly for each of many operating conditions, and on each of several design sections which will accurately capture loss, turning and loading. This paper presents the validation of a boundary ...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics
Maghbouli, Amin; Saray, Rahim Khoshbakhti; Shafee, Sina; Ghafouri, Jafar (2013-04-01)
Dual-fuel combustion provides a relatively easy and inexpensive alternative to conventional diesel engine combustion by drastically reducing fuel consumption with comparable performance characteristics. Accurate simulation of the dual-fuel combustion requires utilization of a detailed chemistry combined with a flow simulation code. In the present study, the combustion process within the diesel and diesel/gas dual-fuel engine is investigated by use of a coupled 3D-CFD/chemical kinetics framework. In this stu...
Experimental investigation of a pressure swirl atomizer spry
Marchione, T.; Allouis, Christophe Gerard; Amoresano, A.; Beretta, F. (2007-09-01)
The fuel injector has an important role in the process for an efficient combustion because it increases the specific surface area of the fuel and it allows one to reach high rates of mixing and evaporation. This paper has focused on the behavior of kerosene Jet A-1 spray produced by commercial pressure swirl atomizers in terms of mean diameter distributions, velocity component profiles, and cone angle variations over time. The analysis has been carried out experimentally with the aid of a phase-Doppler anem...
Modeling and optimization of hybrid electric vehicles
Özden, Burak Şamil; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2013)
The main goal of this thesis study is the optimization of the basic design parameters of hybrid electric vehicle drivetrain components to minimize fuel consumption and emission objectives, together with constraints derived from performance requirements. In order to generate a user friendly and flexible platform to model, select drivetrain components, simulate performance, and optimize parameters of series and parallel hybrid electric vehicles, a MATLAB based graphical user interface is designed. A basic siz...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Pelen, “Modeling the effect of SCR denox unit on diesel engine performance,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2020.