Designing of Ti-Mg composites for various applications

Download
2019
Bütev Öcal, Ezgi
In this study, galvanic corrosion of Ti-Mg based composites has been examined by combining different Mg-alloys with Ti6Al4V alloy and by addition of Na-rich layer between two dissimilar metals. After determining the wetting behavior of liquid unalloyed Mg, AZ91, and WE43 alloys on solid Ti6Al4V alloy, three different composites were manufactured via infiltration of liquid Mg/Mg-alloys into porous Ti6Al4V alloy skeletons. The same procedure was also repeated after coating the porous surfaces of Ti6Al4V alloy by alkali treatment. Electrochemical and non-electrochemical tests have been conducted in simulated body fluid (SBF) separately for bulk samples of Mg/Mg alloys, and their composite counterparts with and without Na-rich coating to reveal and compare corrosion mechanisms. The composites containing unalloyed Mg and AZ91 alloy exhibited greater relative density due to their better wettability on Ti6Al4V alloy. Bulk Mg/Mg alloys displayed micro galvanic corrosion, and AZ91 had the highest corrosion resistance with its homogenously distributed Mg17Al12 intermetallics. On the other hand, the coupling of Mg/Mg-alloys with Ti-alloy intensified the galvanic corrosion; however, the corrosion was not as severe as Ti6Al4V-Mg composites when AZ91 and WE43 alloys are used. In addition, formation of TiAl3 phase in the Ti6Al4V-AZ91 composite reduced the galvanic effect significantly. The presence of Na-rich coating in the composites alleviated the galvanic effect. Although its impact was not visible in composites containing Mg-alloys, remarkable improvement in corrosion resistance was obtained in Ti6Al4V-Mg composite. Na-rich coatings not only reduced the galvanic corrosion but also enhanced the bioactivity of composites by allowing precipitation of Ca-P phases.

Suggestions

Molecular dynamics study of random and ordered metals and metal alloys
Kart, Hasan Hüseyin; Tomak, Mehmet; Department of Physics (2004)
The solid, liquid, and solidification properties of Pd, Ag pure metals and especially PdxAg1-x alloys are studied by using the molecular dynamics simulation. The effects of temperature and concentration on the physical properties of PdxÞAg1-x are analyzed. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used as interatomic interactions which enable one to investigate the thermodynamic, static, and dynamical properties of transition metals. The simulation results such as cohesive ene...
Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium
Aydogan, Dilek Teker; Muhaffel, Faiz; Kilic, Meryem Menekse; Acar, Ozge Karabiyik; Cempura, Grzegorz; Baydoğan, Murat; Gül-karagüler, Nevin; Kose, Gamze Torun; Czyrska-Filemonowicz, Aleksandra; Çimenoğlu, Hüseyin (2018-01-01)
This study has been carried out to optimise the silver (Ag) content of the coating synthesised on commercially pure titanium (Cp-Ti, Grade 4) for biomedical applications by micro-arc oxidation (MAO) process. The MAO process has been conducted in electrolytes containing silver acetate (AgC2H3O2) at different concentrations between 0 and 0.002 mol L-1. When compared to the base electrolyte, coatings synthesised in >= 0.001 mol L-1 AgC2H3O2 added electrolytes exhibited an antibacterial efficiency of 99.8% agai...
Optimization of the mechanical properties of Ti-6Al-4V alloy fabricated by selective laser melting using thermohydrogen processes
BILGIN, Guney Mert; Esen, Ziya; Akin, Seniz Kushan; Dericioğlu, Arcan Fehmi (2017-07-17)
2-step Thermo Hydrogen Process (THP) including hydrogenation and dehydrogenation steps was applied to Ti-6Al-4V alloy fabricated by selective laser melting (SLM) process to refine the microstructure and to increase the ductility of the alloy. It was observed that as-fabricated alloy's surface was composed of oxides of titanium and aluminum, which may alter the hydrogenation kinetics. The hydrogen treatment for 1 hat 650 degrees C, the maximum hydrogen solubility temperature of the alloy, transformed startin...
Application of ab initio methods to secondary lithium batteries
Aydınol, Mehmet Kadri; Ceder, G. (1998-01-01)
Ab initio methods have started to be widely used in materials science for the prediction of properties of metals, alloys and compounds. These methods basically require only the atomic numbers of the constituent species. Such methods not only provide us with predictions of some of the properties of the material (even before synthesizing it) but also help us in understanding the phenomena that control those properties. The use of ab initio methods in the field of electrochemistry is, however, quite recent and...
Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer
Buber, Ece; SÖYLEMEZ, SANİYE; UDUM, YASEMİN; Toppare, Levent Kamil (2018-07-01)
Since conjugated polymers are an important class of materials with remarkable properties in biosensor applications, in this study, a novel glucose biosensor based on a conjugated polymer was fabricated via the electropolymerization of the monomer 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2',3'-c]phenazine onto a graphite electrode surface. Glucose oxidase (GOx) was used as the model biological recognition element. As a result of the enzymatic reaction between GOx and glucose, the glucose amount was det...
Citation Formats
E. Bütev Öcal, “Designing of Ti-Mg composites for various applications,” Thesis (Ph.D.) -- Graduate School of Natural and Applied Sciences. Metallurgical and Materials Engineering., Middle East Technical University, 2019.