Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Flow and turbulence structure around abutments with sloped sidewalls
Date
2014-01-01
Author
Köken, Mete
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
Results of eddy-resolving numerical simulations are used to investigate flow and turbulence structure around an isolated abutment with sloped sidewalls at conditions corresponding to the start (flatbed) and the end (equilibrium bathymetry) of the scour process. Besides cases where the abutment is not protected against scour using riprap, the paper considers cases where a riprap apron of constant width is present around the base of the abutment at the start of the scour process. The paper also discusses the effect of large-scale turbulence (e.g., horseshoe vortex system, eddies shed in the separated shear layer, vortices forming in the recirculation regions) on sediment entrainment and transport. Using information about the position and coherence of the large-scale turbulent structures present in the vicinity of the bed surface, the paper discusses some of the reasons for the very different bed scour patterns observed at equilibrium scour conditions for cases without and with a riprap apron. The effect of the degree of bluntness of the upstream side of the abutment on flow and turbulence structure is discussed based on comparison of results obtained for abutments with sloped sidewalls with those obtained for a vertical-wall abutment of similar length. The later type of abutment is characterized by a stronger downflow, the formation of a more coherent horseshoe vortex system, and the formation of a deeper scour hole.
Subject Keywords
Mechanical Engineering
,
Civil and Structural Engineering
,
Water Science and Technology
URI
https://hdl.handle.net/11511/45715
Journal
Journal of Hydraulic Engineering
DOI
https://doi.org/10.1061/(asce)hy.1943-7900.0000876
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Nonlinear mixing length model for prediction of secondary currents in uniform channel flows
Aydın, İsmail (American Society of Civil Engineers (ASCE), 2009-01-29)
A nonlinear turbulence model for numerical solution of uniform channel flow is presented. Turbulent stresses are evaluated from a nonlinear mixing length model that relates turbulent stresses to quadratic products of the mean rate of strain and the mean vorticity. The definition of the mixing length, based on a three-dimensional integral measure of boundary proximity, eliminates the need for solution of additional transport equations for the turbulence quantities. Experimental data from the literature for c...
Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects
Dicleli, Murat (Elsevier BV, 2010-01-01)
In this study, the effect of soil-bridge interaction on the magnitude of the internal forces in integral abutment bridge (IAB) components due to live load effects is studied. For this purpose, structural models of typical IABs are built by including and excluding the effect of backfill and foundation soil. Analyses of the models are then conducted under an AASHTO live load. In the analyses, the effects of the backfill and foundation soil on the magnitude of the internal forces in IAB components are studied ...
Rubble-mound breakwaters with S-shape design
Ergin, Ayşen; Yanmaz, Ali Melih (American Society of Civil Engineers (ASCE), 1989-01-01)
When a single‐slope, rubble‐mound breakwater is subjected to waves that dislocate the stones but do not cause any overtopping, the damaged section may become stabilized at a certain level of wave attack, generating the “S‐shaped equilibrium profile.” A further increase in wave height finally causes a complete damage of the breakwater. If an equilibrium profile of a rubble‐mound breakwater section is examined, it is observed that the resulting profile is similar to a three‐slope berm‐type section. The fact t...
Reduced order nonlinear aeroelasticity of swept composite wings using compressible indicial unsteady aerodynamics
Farsadi, Touraj; Rahmanian, Mohammad; Kayran, Altan (Elsevier BV, 2020-01-01)
Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady...
Test method for appraising future durability of new concrete bridge decks
Yaman, İsmail Özgür; Aktan, H.M.; Hearn, N.; Staton, J.F. (SAGE Publications, 2002-01-01)
The nondestructive test procedure for quantifying the future durability of bridge deck concrete is based on the fundamental relationship between ultrasonic pulse velocity (UPV) and the permeability of an elastic medium. An experimental study using standard concrete cylindrical specimens (ASTM C192) documented adequate sensitivity between UPV and permeability. The test procedure uses a parameter directly proportional to increase in-field concrete permeability called paste quality loss (PQL). The PQL is compu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Köken, “Flow and turbulence structure around abutments with sloped sidewalls,”
Journal of Hydraulic Engineering
, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45715.