Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of jointed plain concrete pavement systems designed by mechanisticempirical (M-E) method for different traffic, subgrade, material and climatic conditions Farkli trafik, zemin, malzeme ve iklim kosullari için mekanistik-ampirik (M-E) yöntemle tasarlanan derzli donatisiz rijit üstyapi sistemlerinin karsilastirilmasi
Download
index.pdf
Date
2019-01-01
Author
Öztürk, Hande Işık
ŞENGÜN, EMİN
Yaman, İsmail Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
92
downloads
Cite This
In pavement design, traditional empirical catalog methods leave their place to next generation mechanistic-empirical (M-E) design methods that utilize cracking, faulting and roughness as pavement performance parameters. Within the scope of this study, the effects of different traffic, subgrade and concrete strength classes for 20 and 40 year's service periods on the thickness and joint spacing of JPCP are determined by M-E design method for ten regions representing different climatic classes. A total of 360 rigid pavement designs are made for three traffic volumes, three subgrade types and two concrete strength classes for each region. As a result, the effects of subgrade type, traffic volume and concrete strength class on slab thickness and joint spacing is clearly identified for different climatic conditions. In addition, the joint spacing, which is predicted based on experience and observations in the in AASHTO 93 empirical method, can be successfully determined by M-E design method. This is especially advantageous for countries without rigid pavement experience like our country. Another output of this study is that M-E method makes it possible to use more innovative materials in the construction of rigid pavements since the material properties of the concrete slab have significant effects on the design.
Subject Keywords
Jointed plain concrete pavement design
,
Mechanistic-Empirical design
,
Climate
,
Slab thickness
,
Joint spacing
URI
https://hdl.handle.net/11511/45835
Journal
Journal of the Faculty of Engineering and Architecture of Gazi University
DOI
https://doi.org/10.17341/gazimmfd.416536
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Investigation of low temperature cracking in asphalt concrete pavement
Qadir, Adnan; Güler, Murat; Department of Civil Engineering (2010)
In this study, low temperature cracking of asphalt concrete is investigated based on a laboratory experimental program including the design variables of aggregate type, gradation, asphalt content, binder grading, binder modification, and the experimental variables of cooling rate, and specimen size. The design of experiment is proposed according to the fractional factorial design principles to reduce the required number of test specimens. Mix designs are performed according to the Superpave mix design guide...
Predicted impact of design parameters in asphalt concrete layers on pavement performance
Shakhan, Mohammad Razeq; TOPAL, ALİ; ŞENGÖZ, BURAK; Öztürk, Hande Işık (2021-01-01)
© 2021 ICE Publishing: All rights reserved.The scope of this study was to assess the predicted impact of design factors (voids percentage (Va), effective binder content (Vbe) and aggregate gradation) in each asphalt concrete (AC) layer on pavement performance for conditions in Izmir, Turkey. Research was conducted on three flexible pavement structures for three traffic levels and three subgrade types using AashtoWare Pavement ME Design software. The results indicated that increasing Vbe (from 8% to 15%) and...
Parametric Urban Design Thinking: Shared Patterns in Design by Algorithm and Design by Drawing
Çalışkan, Olgu; Ongun, Gokhan (2021-12-01)
The paper suggests a focused examination of the processes of drafting-based design and parametric design in urbanism. It discusses how spatial design's settled cognition would differ by using algorithmic systems through the altered relationships between the basic operations in design. To reveal the commonalities and distinctions between the two design methods, the authors present the detailed documentation of the workshop series, which experimented with both techniques within similar design contexts. By the...
Optimizing Single-Span Steel Truss Bridges with Simulated Annealing
Hasançebi, Oğuzhan (2010-11-01)
This study presents applications of a simulated annealing integrated solution algorithm to the optimum design of single-span steel truss bridges subjected to gravity loadings. In the optimum design process of a bridge the members are sized simultaneously as the coordinates of the upper chord nodes are determined such that the least design weight is attained for the structure. The design constraints and limitations are imposed in accordance with serviceability and strength provisions of ASD-AISC (Allowable S...
Optimization of suspension parameters to improve impact harshness of road vehicles
Aydin, Mert; Ünlüsoy, Yavuz Samim (2012-05-01)
This paper illustrates the development and implementation of a parameter optimization methodology to improve impact harshness (IH) of road vehicles. A full ADAMS model of a small commercial vehicle is used as the IH test vehicle. The methodology involves the use of design of experiments methods together with response surface methodology. Significant design parameters affecting IH of the vehicle are first determined by the screening experiments. Once the critical parameters are identified, they are optimized...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. I. Öztürk, E. ŞENGÜN, and İ. Ö. Yaman, “Comparison of jointed plain concrete pavement systems designed by mechanisticempirical (M-E) method for different traffic, subgrade, material and climatic conditions Farkli trafik, zemin, malzeme ve iklim kosullari için mekanistik-ampirik (M-E) yöntemle tasarlanan derzli donatisiz rijit üstyapi sistemlerinin karsilastirilmasi,”
Journal of the Faculty of Engineering and Architecture of Gazi University
, pp. 771–783, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45835.