Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Model Variance for Ensemble Based Turbulence Modeling
Date
2015-04-01
Author
Jiang, Nan
Kaya Merdan, Songül
Layton, William
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
This report develops an ensemble or statistical eddy viscosity model. The model is parameterized by an ensemble of solutions of an ensemble-Leray regularization. The combined approach of ensemble time stepping and ensemble eddy viscosity modeling allows direct parametrization of the turbulent viscosity co-efficient. We prove unconditional stability and that the model's solution approaches statistical equilibrium as t -> infinity; the model's variance converges to zero as t -> infinity. The ensemble method is used to interrogate a rotating flow, testing its predictability by computing effiective averaged Lyapunov exponents.
Subject Keywords
Applied Mathematics
,
Numerical Analysis
,
Computational Mathematics
URI
https://hdl.handle.net/11511/45878
Journal
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
DOI
https://doi.org/10.1515/cmam-2014-0029
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
An analysis of a linearly extrapolated BDF2 subgrid artificial viscosity method for incompressible flows
Demir, Medine (Elsevier BV, 2020-10-01)
This report extends the mathematical support of a subgrid artificial viscosity (SAV) method to simulate the incompressible Navier-Stokes equations to better performing a linearly extrapolated BDF2 (BDF2LE) time discretization. The method considers the viscous term as a combination of the vorticity and the grad-div stabilization term. SAV method introduces global stabilization by adding a term, then anti-diffuses through the extra mixed variables. We present a detailed analysis of conservation laws, includin...
Analysis of variance and linear contrasts in experimental design with generalized secant hyperbolic distribution
Yilmaz, Yidiz E.; Akkaya, Ayşen (Elsevier BV, 2008-07-01)
We consider one-way classification model in experimental design when the errors have generalized secant hyperbolic distribution. We obtain efficient and robust estimators for block effects by using the modified maximum likelihood estimation (MML) methodology. A test statistic analogous to the normal-theory F statistic is defined to test block effects. We also define a test statistic for testing linear contrasts. It is shown that test statistics based on MML estimators are efficient and robust. The methodolo...
Accurate numerical bounds for the spectral points of singular Sturm-Liouville problems over 0 < x < infinity
Taşeli, Hasan (Elsevier BV, 2004-03-01)
The eigenvalues of singular Sturm-Liouville problems defined over the semi-infinite positive real axis are examined on a truncated interval 0<x<l as functions of the boundary point l. As a basic theoretical result, it is shown that the eigenvalues of the truncated interval problems satisfying Dirichlet and Neumann boundary conditions provide, respectively, upper and lower bounds to the eigenvalues of the original problem. Moreover, the unperturbed system in a perturbation problem, where l remains sufficient...
On the smoothness of solutions of impulsive autonomous systems
Akhmet, Marat (Elsevier BV, 2005-01-01)
The aim of this paper is to investigate dependence of solutions on parameters for nonlinear autonomous impulsive differential equations. We will specify what continuous, differentiable and analytic dependence of solutions on parameters is, define higher order derivatives of solutions with respect to parameters and determine conditions for existence of such derivatives. The theorem of analytic dependence of solutions on parameters is proved.
Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework
ÖZDEMİR, İZZET; Yalçınkaya, Tuncay (Springer Science and Business Media LLC, 2014-08-01)
This paper focuses on the continuum scale modeling of dislocation-grain boundary interactions and enriches a particular strain gradient crystal plasticity formulation (convex counter-part of Yal double dagger inkaya et al., J Mech Phys Solids 59:1-17, 2011; Int J Solids Struct 49:2625-2636, 2012) by incorporating explicitly the effect of grain boundaries on the plastic slip evolution. Within the framework of continuum thermodynamics, a consistent extension of the model is presented and a potential type non-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Jiang, S. Kaya Merdan, and W. Layton, “Analysis of Model Variance for Ensemble Based Turbulence Modeling,”
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
, pp. 173–188, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45878.