Scheduling parallel machines to minimize weighted flowtime with family set-up times

We describe and evaluate several branch-and-bound algorithms for an identical parallel machine scheduling problem with family set-up times and an objective of minimizing total weighted flowtime. The algorithms differ by choice of lower bound method. Computational results suggest conditions favourable to a particular algorithm as well as the range of problem sizes that can be optimally solved in reasonable CPU time.


Dissimilarity maximization method for real-time routing of parts in random flexible manufacturing systems
Saygin, C; Kilic, SE (Springer Science and Business Media LLC, 2004-04-01)
This paper presents a dissimilarity maximization method (DMM) for real-time routing selection and compares it via simulation with typical priority rules commonly used in scheduling and control of flexible manufacturing systems (FMSs). DMM aims to reduce the congestion in the system by selecting a routing for each part among its alternative routings such that the overall dissimilarity among the selected routings is maximized. In order to evaluate the performance of DMM, a random FMS, where the product mix is...
Due date and cost-based FMS loading, scheduling and tool management
Turkcan, Ayten; Akturk, M. Selim; Storer, Robert H. (Informa UK Limited, 2007-03-01)
In this study, we consider flexible manufacturing system loading, scheduling and tool management problems simultaneously. Our aim is to determine relevant tool management decisions, which are machining conditions selection and tool allocation, and to load and schedule parts on non-identical parallel CNC machines. The dual objectives are minimization of the manufacturing cost and total weighted tardiness. The manufacturing cost is comprised of machining and tooling costs (which are affected by machining cond...
Spread time considerations in operational fixed job scheduling
Eliiyi, D. T.; Azizoğlu, Meral (Informa UK Limited, 2006-10-15)
In this study, we consider the operational fixed job scheduling problem on identical parallel machines. We assume that the jobs have fixed ready times and deadlines, and spread time constraints are imposed on machines. Our objective is to select a set of jobs for processing so as to maximise the total weight. We show that the problem is strongly NP-hard, and we investigate several special polynomially solvable cases. We propose a branch and bound algorithm that employs size reduction mechanisms, dominance c...
Generating all efficient solutions of a rescheduling problem on unrelated parallel machines
Ozlen, Melih; Azizoğlu, Meral (Informa UK Limited, 2009-01-01)
In this paper, we consider a rescheduling problem where a set of jobs has already been assigned to unrelated parallel machines. When a disruption occurs on one of the machines, the affected jobs are rescheduled, considering the efficiency and stability measures. Our efficiency measure is the total flow time and stability measure is the total reassignment cost caused by the differences in the machine allocations in the initial and new schedules. We propose a branch and bound algorithm to generate all efficie...
Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling
BETTEMİR, ÖNDER HALİS; Sönmez, Rifat (American Society of Civil Engineers (ASCE), 2015-09-01)
Resource-constrained project scheduling problem (RCPSP) is a very important optimization problem in construction project management. Despite the importance of the RCPSP in project scheduling and management, commercial project management software provides very limited capabilities for the RCPSP. In this paper, a hybrid strategy based on genetic algorithms, and simulated annealing is presented for the RCPSP. The strategy aims to integrate parallel search ability of genetic algorithms with fine tuning capabili...
Citation Formats
M. Azizoğlu, “Scheduling parallel machines to minimize weighted flowtime with family set-up times,” INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, pp. 1199–1215, 2003, Accessed: 00, 2020. [Online]. Available: