Design and performance of a hybrid fast and thermal neutron detector

Download
2017-10-01
Singh, M. K.
Sonay, A.
DENİZ, MUHAMMED
Agartioglu, M.
Asryan, G.
Kumar, G. Kiran
Li, H. B.
Li, J.
Lin, F. K.
Lin, S. T.
Sharma, V.
Singh, L.
Singh, V.
Subrahmanyam, V. S.
Soma, A. K.
Wong, H. T.
Yang, S. W.
Yildirim, I. O.
Yue, Q.
Zeyrek, Mehmet Tevfik
We report the characterization, calibration and performance of a custom-built hybrid detector consisting of BC501A liquid scintillator and BC702 scintillator for the detection of fast and thermal neutrons, respectively. Pulse Shape Discrimination techniques are developed to distinguish events due to gamma-rays, fast and thermal neutrons. Software analysis packages are developed to derive raw neutron energy spectra from measured proton recoil spectra. The validity is demonstrated through the reconstruction of the (AmBe)-Am-241(alpha,n) neutron spectrum. (C) 2017 Elsevier B. V. All rights reserved.
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT

Suggestions

Numerical and Experimental Investigation into LWIR Transmission Performance of Complementary Silicon Subwavelength Antireflection Grating (SWARG) Structures
Cetin, Ramazan; Akın, Tayfun (Springer Science and Business Media LLC, 2019-03-18)
This paper presents a detailed comparison between the long wave infrared (LWIR) transmission performances of binary, silicon based, structurally complementary pillar and groove type antireflective gratings that can be used for wafer level vacuum packaging (WLVP) of uncooled microbolometer detectors. Both pillar and groove type gratings are designed with various topological configurations changing in various period sizes (Delta) from 1.0 mu m to 2.0 mu m, various heights/depths (h) from 0.8 mu m to 1.8 mu m,...
Design, production and performance analysis of a multi-pass matrix optical system for trace spectroscopy
Önder Aksan, Tuba; Bek, Alpan; Kürüm, Ulaş; Department of Physics (2021-9-09)
The design and fabrication of a multi-pass matrix optical system (MMS) for the atmospheric trace gas measurement system planned to be established is described. The measurement system is a sealed thermal vacuum-capable chamber in which synthetic atmosphere configurations can be obtained by releasing various gases into the system. To increase the sensitivity of spectroscopic measurements, a MMS is designed to extend the optical path inside the chamber. The system, which is a modified Chernin cell design consi...
Design and fabrication of a high performance resonant MEMS temperature sensor
Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (IOP Publishing, 2016-04-01)
This paper presents a high performance MEMS temperature sensor comprised of a double-ended-tuning-fork (DETF) resonator and strain-amplifying beam structure. The temperature detection is based on the 'thermal strain induced frequency variations' of the DETF resonator. The major source of thermal strain leading to the frequency shifts is the difference in thermal expansion coefficients of the substrate and the device layers of the fabricated structures. By selecting the substrate as glass and the device laye...
Development of a parylene bonding based fabrication method for MEMS gravimetric resonant based mass sensors
Gökçe, Furkan; Külah, Haluk; Department of Electrical and Electronics Engineering (2017)
This thesis reports development of a parylene bonding based fabrication method for MEMS gravimetric resonant based mass sensors that are integrated with microfluidics for real-time detection when there is a liquid flow through the microfluidic channels. Parylene bonding has been optimized by conducting several bare bonding experiments. The optimized bonding takes place at 250ºC, in vacuum (1 mTorr) and with 2000 N of vertical piston force for 1 hour. The average shear bonding strength is 15.58 MPa for the o...
Development of a high yield fabrication process for MEMS based resonant mass sensors for cell detection applications
Töral, Taylan Berkin; Külah, Haluk; Department of Micro and Nanotechnology (2014)
This thesis reports the development of a high yield fabrication flow for MEMS based resonant mass sensors for cell detection applications. The basic design is a gravimetric resonator for real-time electronic detection of captured cells through bioactivation on gold coated active area which assures an antibody based cell capture inside a biocompatible microfluidic channel. The proposed design is demonstrated to have various advantages over its conventional counterparts. However, the yield of the previous fab...
Citation Formats
M. K. Singh et al., “Design and performance of a hybrid fast and thermal neutron detector,” NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, pp. 109–118, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45969.