Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Aerothermodynamic Shape Optimization of Reentry Capsule
Date
2018-06-25
Author
Kutkan, Halit
Eyi, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
14
views
0
downloads
Cite This
This paper presents a hybrid method based on proper orthogonal decomposition (POD) with a trained radial basis function (RBF) network, on direct simulation monte carlo (DSMC) solutions for aerothermodynamic front surface optimization of Stardust reentry. Gaussian and multiquadric RBFs are implemented for comparison, and multiquadric functions are chosen due to their insensitivity to diverse shape parameters. Cubic uniform B-spline curves are used innovatively for parameterization of the geometry change,instead of curve fitting the geometry itself. This makes possible to reduce the number of design variables. Gradientbased optimization strategy is implemented by regarding the distributions of pressure, shear stress and heat flux along the surface of the geometries. G.A. Bird’s two dimensional axisymmetric DSMC solver [1]is used as the physics solver, and 11 species air model are chosen with 41 chemical reactions according to atmospheric conditions of the reentry. Different geometries are obtained via deviatingthe design variables arbitrarily to form a snapshot pool. In this manner, the approximation success of the POD-RBF methodology is tested on highly nonlinear flow conditions with arbitrarily chosen design of experiment. Finally, the optimized geometries are simulated via DSMC code and the solutions are compared with the solutions of POD-RBF network. Method loweredthe optimization time extraordinarily and provided satisfactory results.
Subject Keywords
Thermophysics
URI
https://hdl.handle.net/11511/45991
DOI
https://doi.org/10.2514/6.2018-4071
Collections
Department of Aerospace Engineering, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Kutkan and S. Eyi, “Aerothermodynamic Shape Optimization of Reentry Capsule,” 2018, vol. 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45991.