Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Nanocluster formation and stabilization fundamental studies. 2. Proton sponge as an effective H+ scavenger and expansion of the anion stabilization ability series
Date
2002-10-01
Author
Özkar, Saim
Finke, RG
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
The two main goals of the current work are: (i) to test the effects of Proton Sponge as a H+ scavenger and (ii) to test and rank the relative efficacy of the anions (Y-) listed below for their relative ability to allow the formation, stabilization (including isolability), high catalytic activity, and long catalytic lifetime in the following, more generalizable transition metal nanocluster formation reaction: 1.0[Bu4N](q)Y + 1.0[(1,5-COD)Ir(I)(CH3CN)(2)]BF4 + 2.5H(2) --> 1.0cyclooctane + 1/n{[Bu4N](nq)[Ir(0)(n).Y]} + H+BF4- + 2CH(3)CN. The anions investigated, Y-, are the tri-Nb(V)-substituted polyoxoanion SiW9Nb3O407-, the tri-Ti(IV)-substituted polyoxoanion ([P2W15(TiOH)(3)O-similar to59](9-))(n) (n = 1, 2), citrate trianion (C6H5O73-), acetate (OAc-), trimetaphosphate (P3O93-), chloride (Cl-), and hydroxide (OH-). The five criteria we developed recently (Ozkar, S.; Finke, R. G. J. Am. Chem. Soc. 2002, 124, 5796) are used to determine the effects of Proton Sponge (in comparison to control experiments employing Bu4N+OH-) and to rank the Y- anions. The results reveal that Proton Sponge is an effective, weakly coordinating, and generally preferred Bronsted base in comparison to the more basic and more coordinating OH-, at least for the formation and catalytic properties of Ir(0) nanoclusters in acetone with BH4N+ and for other conditions examined. The results also yield an expanded anion series of the relative ability of anions to promote the kinetically controlled formation, stabilization, and good catalytic properties of Ir(0) nanoclusters in acetone with Bu4N+ cations: P2W15Nb3O629- similar to [(P2W15Nb3O61)(2)O](16-) similar to SiW9Nb3O407- similar to ([P2W15(TiOH)(3)O-similar to59](9-))(n) (n = 1, 2) > C6H5O73- > [-CH2-CH(CO2-)-](n)(n-) similar to OAc- similar to P3O93- similar to Cl- similar to OH-. The essence of this series, the first of its kind, is: Bronsted basic polyoxoanions > citrate(3-) > other common anions used in nanocluster syntheses. The results allow three other (five total) conclusions, results that should assist others in picking the best anions for the formation and stabilization of their own transition metal nanoclusters.
Subject Keywords
Supported organometallic complex
,
Metal-oxide analogs
,
Trisubstituted heteropolytungstates
,
Catalyst precursors
,
Polyoxoanion
,
Mechanism
,
Hydrogen
,
Nucleation
URI
https://hdl.handle.net/11511/46113
Journal
LANGMUIR
DOI
https://doi.org/10.1021/la020225i
Collections
Department of Chemistry, Article