Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
3D path planning for unmanned aerial vehicles
Date
2013-05-31
Author
Halit, Ergezer
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
12
views
0
downloads
Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path, the objectives are to maximize the collected information from Desired Regions (DR) while avoiding flying over Forbidden Regions (FR) and reaching the destination. In this paper, the path planning problem for a multiple Unmanned Air Vehicles (UAVs) is studied with the proposal of novel evolutionary operators. The initial populations seed-path for each UAV have been obtained both by utilizing the Pattern Search method and solving the multiple Traveling Salesman Problem (mTSP). Utilizing the mTSP solves the assignment problem of which DR should be visited by which UAV. It should be emphasized that all of the paths in population in any generation of the evolutionary algorithm (EA) have been constructed using the dynamical mathematical model of an UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm has been tested with different scenarios, and the results are presented.
Subject Keywords
Path planning
,
Evolutionary computation
,
Unmanned aerial vehicles
,
Mathematical model
,
MATLAB
URI
https://hdl.handle.net/11511/46116
DOI
https://doi.org/10.1109/siu.2013.6531346
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar