Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An investigation of liquefaction effects on piers and piles of segmental precast balanced cantilever bridges
Download
index.pdf
Date
2019
Author
Gündüz, Özer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
394
views
190
downloads
Cite This
In this thesis, the seismic behavior of a typical segmental precast balanced cantilever bridge over liquefiable soils is investigated. Liquefaction is a phenomenon that is triggered by large movements of the sand layer during earthquakes and cause damage to structures. The subject is still under investigation, approaches for liquefaction induced lateral spreading calculations can be found in the literature. Inertial and kinematic effects of the lateral spreading were studied with a total of four different approaches which are the non-liquefied scenario, liquefied scenario for inertial analysis, force-based method case and displacement-based method for kinematic analysis. The focus of this study is given to identify the changes in the structural response of case study bridge using different approaches. In inertial analysis, liquefaction effect on acceleration response spectrum was estimated via one-dimensional site response modeling. Some specifications have offered p-y curves for soil-pile interaction. Also, they suggest that the design response spectrum can be used in the case of liquefaction. Therefore, the liquefied and non-liquefied configuration was set up in this thesis for inertial analysis of this kind of bridge. In kinematic effects of soil, lateral spreading which is one of the major damaging mechanism of liquefaction also investigated. In this purpose, different soil profiles having different peak ground accelerations, the shear strain of the soil were analyzed. P-y curves belonging to the soil profile had been modeled and their effects on superstructure and infrastructure were discussed. It was observed that the structure period is highly important in considering inertial analysis. Pier seismic design forces are critical in liquefied response-spectrum models than non-liquefied one which is design spectrum. Also, pile forces were more critical in displacement applied lateral spreading. Then other methods, liquefaction effects on the spectrum can significantly alter the structural response for long period structures.
Subject Keywords
Earthquakes
,
Liquefaction
,
Lateral Spreading
,
Precast Balanced Cantilever Bridge
,
Piles
,
Piers
URI
http://etd.lib.metu.edu.tr/upload/12624876/index.pdf
https://hdl.handle.net/11511/46138
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Estimation of lining thickness around circular shafts
Ozturk, H; Unal, E (2001-06-22)
In this paper, the broken zone developing, around a circular mine shafts and lining pressure is estimated by integrating the results of numerical analysis and the "rock-load height" equation derived from empirical analysis. During numerical modelling studies, the computer program FLAC(2D) was utilized. In order to estimate equivalent Mohr failure Envelope from the generalised Hoek Brown failure criterion, a new FISH function was written within FLAC(2D). Parametric studies were carried out by considering mRM...
Comparative assessment of the efficiency of seismic isolation for seismic retrofitting of highway bridges in regions of low-to-moderate seismicity
Karalar, Memduh; Dicleli, Murat (null; 2019-07-06)
In this paper, the economical and structural efficiency of friction pendulum bearings (FPB) for retrofitting typical seismically vulnerable bridges in the State of Illinois is studied. For this purpose, a bridge was selected by the Illinois Department of Transportation (IDOT) to represent typical seismically vulnerable bridges commonly used in the State of Illinois. A comprehensive structural model of the bridge was first constructed for seismic analysis. An iterative multi-mode response spectrum (MMRS) ana...
Earthquake imprints on a lacustrine deltaic system: The Kurk Delta along the East Anatolian Fault (Turkey)
Hubert-Ferrari, Aurelia; El-Ouahabi, Meriam; Garcia-Moreno, David; Avşar, Ulaş; Altinok, Sevgi; Schmidt, Sabine; Fagel, Nathalie; Cagatay, M. Namik (2017-08-01)
Deltas contain sedimentary records that are not only indicative of water-level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kurk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re-evaluates water-level changes and earthquake shaking that have affected the Kurk Delta, combinin...
A Numerical Study on the Behavior of Offshore Suction Bucket Foundations under Cyclic Lateral Loading
Alp, Yilmaz S.; Ercan, Tasan H. (2020-01-01)
Offshore wind turbines are exposed to high cyclic lateral loads induced by wind and waves which play a special role in the design of foundations. It's essential to clarify the bucket behavior under cyclic lateral loading to fulfil the design requirements of these foundations in both ultimate and serviceability limit states. In this study the behavior of monopods embedded in saturated sandy soil subjected to cyclic lateral loads were investigated using a sophisticated finite element model. The accumulation o...
Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments
Erhan, Semih; Dicleli, Murat (2015-02-01)
In this study, the seismic performance of integral and conventional bridges is compared particularly considering the differences at their abutments. For this purpose, three existing integral bridges with one, two and three spans are selected and then designed as conventional jointed bridges. The structural models of the integral and conventional bridges are then built including nonlinear structural and dynamic soil-bridge interaction effects. Next, nonlinear time history analyses of the bridge models are co...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Gündüz, “An investigation of liquefaction effects on piers and piles of segmental precast balanced cantilever bridges,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences . Earthquake Studies., Middle East Technical University, 2019.