Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique

2010-01-01
The purpose of this study is non-destructive determination of residual stresses in the welded steel plates by Magnetic Barkhausen Noise (MBN) technique. A MBN-stress calibration set-up and a residual stress measurement system with scanning ability were developed. To control the accuracy and the effectiveness of the developed system and procedure, various MBN measurements were carried out. The MBN results were verified by the hole-drilling method. Microstructural investigation and hardness measurements were also conducted. It was concluded that if the calibration procedure including the effect of microstructure is appropriate then MBN is a very promising method for non-destructive, fast and accurate prediction of residual stresses in the welded plates.
NDT & E INTERNATIONAL

Suggestions

Investigating the Effects of Subsequent Weld Passes on Surface Residual Stresses in Steel Weldments by Magnetic Barkhausen Noise Technique
Gür, Cemil Hakan; Batıgün, Caner; Çam, İbrahim (2016-03-01)
Variations of surface residual stresses with subsequent weld passes were investigated in API 5L X70 steel plates by the magnetic barkhausen noise (MBN) technique. The plates were welded by applying a number of different passes under fully clamped conditions. After each weld pass, the MBN signal and hardness distributions on the front and back surfaces of the plates were measured. A specific calibration procedure and setup were used for conversion of the MBN signals into elastic stress values. The results we...
Investigating the effects of subsequent weld passes on surface residual stresses in steel weld merits by Magnetic Barkhausen Noise technique
Gür, Cemil Hakan; Batıgün, Caner; Çam, İbrahim (American Society of Nondestructive Testing, 2016-03-01)
Non-destructive evaluation of residual stresses in the multi-pass steel weldments
Erian, Gökhan; Gür, Cemil Hakan; Batıgün, Caner; Department of Metallurgical and Materials Engineering (2012)
The purpose of this thesis is non-destructive determination of residual stress state in the multi-pass welded steel plates by Magnetic Barkhausen Noise (MBN) technique. To control the effectiveness of the developed procedure, continuous MBN measurements on the heat affected zone and parent metal of the welded plates were performed. In the experimental part, various steel plates were welded with different number of weld passes. Various series of samples were prepared for residual stress and for angular defle...
Monitoring variation of surface residual stresses in shot peened steel components by the magnetic Barkhausen noise method
SAVAŞ, SERDAR; Gür, Cemil Hakan (2010-12-01)
Shot peening is a cold working process by which residual compressive stresses are induced in the surface and near-surface region to increase the fatigue strength and the resistance to stress corrosion cracking This study covers non-destructive evaluation of surface residual stresses in the shot peened steel components by the magnetic Barkhausen noise method For this purpose various sets of steel specimens were prepared by a controlled shot peening process with different intensities impact angles and coverag...
NONDESTRUCTIVE MONITORING OF VARIATIONS OF RESIDUAL STRESSES IN STEEL WELDMENTS BY MAGNETIC BARKHAUSEN NOISE METHOD
Gür, Cemil Hakan; Batıgün, Caner; Çam, İbrahim (2013-07-18)
Variations of surface residual stresses as a function of weld runs in API 5L X70 steel plates were non-destructively monitored by Magnetic Barkhausen Noise (MBN) method. After each weld run, MBN signal and hardness distributions were recorded. MBN signals were converted into stress values by using a specific calibration procedure. The results were analyzed by considering microstructure investigations and hardness measurements, and then, they were compared with the results of X-ray diffraction measurements. ...
Citation Formats
H. İ. Yelbay, İ. Çam, and C. H. Gür, “Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique,” NDT & E INTERNATIONAL, pp. 29–33, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46205.