Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Alkali activation of a slag at ambient and elevated temperatures
Date
2012-02-01
Author
Altan, Ekin
Erdoğan, Sinan Turhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Strength development of alkali activated slag (AAS) mortars, activated using alkali hydroxide and sodium silicate, was investigated at room and elevated temperatures. Heat evolution at room temperature was measured using isothermal calorimetry. Important differences were observed between critical activation parameters. Heat cured specimens gain strength rapidly, humid oven conditions being favorable, but given sufficient time room temperature curing yields comparable strengths. Both activators are needed for high strength at room temperature, NaOH solution is more critical and its concentration greatly influences strength. At 80 degrees C however, sodium silicate is essential and even sufficient. KOH is more effective than NaOH at 80 degrees C, but not at room temperature. Lower water-to-slag ratios give higher strength at early ages. AAS hydration evolves less heat than Portland cement hydration. Time to significant strength gain of mixtures can be predicted using their time and heat evolution at setting. Twenty eight-day strength of AAS mortars is roughly related to total evolved heat and increases nearly linearly with the amount of NaOH activator for fixed water glass content.
Subject Keywords
Slag
,
Alkali activation
,
High temperature
,
Ambient
,
Caustic soda
,
Water glass
URI
https://hdl.handle.net/11511/46210
Journal
CEMENT & CONCRETE COMPOSITES
DOI
https://doi.org/10.1016/j.cemconcomp.2011.08.003
Collections
Department of Civil Engineering, Article