Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
PCB sources, transformations, and contributions in recent Fox River, Wisconsin sediments determined from receptor modeling
Date
2002-08-01
Author
İmamoğlu, İpek
Chrıstensen, Er
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The PCB contamination in lower Fox River sediments was investigated in order to identify possible PCB sources, contributions, and transformations, using two receptor models. Congener specific sediment PCB data from sites immediately upstream of DePere dam to Green Bay that had been gathered for the Green Bay/Fox River Mass Balance Study, were used in this analysis. The first receptor model is a self training factor analysis (FA) model with non-negative constraints that was applied to identify the PCB sources and significant congener patterns. The second is a chemical mass balance model (CMB) in which published Aroclor sources, inferred from our FA model, were used to apportion these Aroclors to each sample. The FA model indicated two significant factors, the major one being Aroclor 1242 and the other, a profile dominated by low chlorinated congeners, indicating a possible PCB alteration profile. This profile had significant contributions to samples at or around sites with total PCB concentrations higher than 50 ppm, indicating a potential anaerobic dechlorination activity. It was also deduced from the FA model that very small contributions of more highly chlorinated Aroclors may be present in the system. The results from the CMB model confirmed that the system is dominated by Aroclor 1242. Its average contribution was 95%, with small amounts of Aroclor 1254 (2%) and 1260 (1%). Two of the samples, located in the vicinity of point sources, showed high contributions of Aroclor 1016 by the CMB model. This is interpreted as an altered Aroclor profile resembling the less chlorinated Aroclor 1016. Contributions obtained. form the CMB and FA models show similar patterns.
Subject Keywords
Ecological Modelling
,
Waste Management and Disposal
,
Pollution
,
Water Science and Technology
URI
https://hdl.handle.net/11511/46216
Journal
WATER RESEARCH
DOI
https://doi.org/10.1016/s0043-1354(02)00050-7
Collections
Department of Environmental Engineering, Article