Realization of Single Layer Microbolometer Detector Pixel Using ZnO Material

2020-09-01
Tanrikulu, M. Yusuf
Yildizak, Cigdem
Okyay, Ali K.
Akar, Orhan
Sarac, Adem
Akın, Tayfun
This paper presents the realization of a single layer microbolometer pixel fabricated using only ZnO material coated with atomic layer deposition. Due to the stress-free nature and high temperature coefficient of resistance of the ALD coated ZnO material, it can be used both as structural and active layers in microbolometer detectors. The design, simulations, and the fabrication optimization of two types of single layer ZnO microbolometer having pixel pitch of 35 mu m are shown in this study. The designed pixels have thermal conductances of 58 nW/K and 476 nW/K while their thermal time constant values are 1.62 ms and 0.24 ms. The temperature coefficient of resistance and 1/f corner frequency of fabricated resistors are measured to be -10 %/K and 302.5 Hz respectively. The absorption coefficients of both pixels are measured to be around 40 % in 8-12 mu m wavelength range. The fabricated pixels are the first examples of successfully obtained single layer ZnO microbolometer pixels in literature and the proposed structures can be used to decrease the design complexities and fabrication costs and increase the yield of the detectors making them possible to be used in low-cost applications.
IEEE SENSORS JOURNAL

Suggestions

Microwave Characterization of a Wafer-Level Packaging Approach for RF MEMS Devices Using Glass Frit Bonding
Comart, Ilker; Topalli, Kagan; Demir, Şimşek; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-06-01)
This paper presents the microwave characterization of a wafer level packaging approach for RF MEMS devices, using glass frit as the bonding material. Coplanar waveguide transmission lines are packaged by silicon caps to carry out the RF characterization of the package structure. Prior to bonding of the cap on the transmission lines, cap wafers are bulk micromachined to form the cavities for housing the device to be packaged and pad windows to access the RF ports of the devices. Lateral feedthroughs are desi...
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Alper, Se; Akın, Tayfun (Elsevier BV, 2004-09-21)
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the para...
Efficient solution of the electric-field integral equation using the iterative LSQR algorithm
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-01-01)
In this letter, we consider iterative solutions of the three-dimensional electromagnetic scattering problems formulated by surface integral equations. We show that solutions of the electric-field integral equation (EFIE) can be improved by employing an iterative least-squares QR (LSQR) algorithm. Compared to many other Krylov subspace methods, LSQR provides faster convergence and it becomes an alternative choice to the time-efficient no-restart generalized minimal residual (GMRES) algorithm that requires la...
Design of a microbial sensor using conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine
Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; Yidiz, Ersin; TİMUR, SUNA; Toppare, Levent Kamil (Elsevier BV, 2009-03-28)
A microbial biosensor based on Gluconobacter oxydans cells immobilized on the conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) coated onto the Surface of graphite electrode was constructed. The proposed biosensor was characterized using glucose as the Substrate. The linear relation was observed in the range of 0.1-2.5 mM and defined by the equation y = 0.415x + 0.377 (R-2 = 0.986). Analytical characterization, effects of electropolymerization time, pH, cell amount and the ...
Pirani Vacuum Gauges Using Silicon-on-Glass and Dissolved-Wafer Processes for the Characterization of MEMS Vacuum Packaging
Topalli, Ebru Sagiroglu; Topalli, Kagan; Alper, Said Emre; Serin, Tulay; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2009-03-01)
This paper presents the design and implementation of Pirani vacuum gauges for the characterization of vacuum packaging of microelectromechanical systems (MEMS). Various Pirani vacuum gauges are fabricated with two different standard in-house fabrication processes, namely the silicon-on-glass (SOG) process and dissolved-wafer process (DWP). The Pirani gauges utilize meander-shaped suspended silicon coils as the heaters and two isolated silicon islands in the close proximity of the heater that function as dua...
Citation Formats
M. Y. Tanrikulu, C. Yildizak, A. K. Okyay, O. Akar, A. Sarac, and T. Akın, “Realization of Single Layer Microbolometer Detector Pixel Using ZnO Material,” IEEE SENSORS JOURNAL, pp. 9677–9684, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46313.