Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Download
index.pdf
Date
2004-09-21
Author
Alper, Se
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
226
views
0
downloads
Cite This
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the parasitic signal coupling by two orders of magnitude, according to both simulation results in CoventorWare and measured results on fabricated devices. A capacitive interface circuit which is fabricated in a 0.8 mum CMOS process is hybrid connected to the gyroscope, where the circuit has an input capacitance lower than 50 fF and a sensitivity of 33 mV/fF, which are currently limited by the parasitic capacitances due to hybrid wirebonding. It has been identified that the amount of parasitic capacitances must be lower than or at least in the same order with the electrical equivalent capacitance of the gyroscope for clear mechanical resonance characteristics to be obtained. Fabricated gyroscopes have close resonant frequencies for the drive and sense modes, as 37.2 and 38.3 kHz, respectively. Calculations on measured resonance values suggest that the fabricated gyroscope with 16 mum-thick structural layer provides a Brownian noise floor of 7.3degrees/h/Hz(1/2) at vacuum. Currently, the overall rate sensitivity of the gyroscope is limited to 96degrees/h in 50 Hz bandwidth for matched-frequency operation, and it can be decreased down to 56degrees/h in 50 Hz bandwidth, by improving the quality of the electrodeposited nickel.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
,
Metals and Alloys
URI
https://hdl.handle.net/11511/47157
Journal
SENSORS AND ACTUATORS A-PHYSICAL
DOI
https://doi.org/10.1016/j.sna.2004.04.041
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design of a microbial sensor using conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine
Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; Yidiz, Ersin; TİMUR, SUNA; Toppare, Levent Kamil (Elsevier BV, 2009-03-28)
A microbial biosensor based on Gluconobacter oxydans cells immobilized on the conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) coated onto the Surface of graphite electrode was constructed. The proposed biosensor was characterized using glucose as the Substrate. The linear relation was observed in the range of 0.1-2.5 mM and defined by the equation y = 0.415x + 0.377 (R-2 = 0.986). Analytical characterization, effects of electropolymerization time, pH, cell amount and the ...
A low-cost rate-grade nickel microgyroscope
Alper, Said Emre; Silay, Kanber Mithat; Akın, Tayfun (Elsevier BV, 2006-11-08)
This paper presents a low-cost microgyroscope with a resolution in the rate-grade at atmospheric pressure, which is fabricated using a CMOScompatible nickel electrofonning process. Angular rate resolution of the gyroscope is increased by matching the resonance frequencies of the drive and sense modes close to each other using symmetric suspensions and electrostatic frequency tuning; whereas, undesired mechanical coupling between the two modes during matched mode operation is reduced by the fully decoupled g...
Tunable dual-frequency RF MEMS rectangular slot ring antenna
Topalli, Kagan; Erdil, Emre; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Koç, Seyit Sencer; Akın, Tayfun (Elsevier BV, 2009-12-01)
This paper presents the design, fabrication, and measurement of a novel, tunable, dual frequency rectangular slot antenna using RF MEMS technology. The antenna tuning is achieved by electrostatically actuated RF MEMS variable capacitors on a stub. Two different capacitor structures are implemented on the antenna: cantilever type and fixed-fixed beam type. The latter one is not sensitive to the stress on the structural layer and its measurement results agree well with the simulation results. Each antenna is ...
Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode
Gullu, H. H.; Yildiz, D. E.; Surucu, O.; Parlak, Mehmet (Springer Science and Business Media LLC, 2020-06-01)
This study reveals the electrical properties of In/HfO2/n-Si structure with atomic layer-deposited interfacial oxide layer, HfO2 thin film between In top metal contact and monocrystalline Si wafer substrate. From the dark current-voltage measurements, the diode structure showed good rectifying behavior and low saturation current of about two order of magnitude and 1.2 x 10(- 9) A, respectively. According to the conventional thermionic emission model, zero-bias barrier height and ideality factor were calcula...
Electrical Characterization of ZnInSe2/Cu0.5Ag0.5InSe2 Thin-Film Heterojunction
Gullu, H. H.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
ZnInSe2/Cu0.5Ag0.5InSe2 diode structures have been fabricated by thermal evaporation of stacked layers on indium tin oxide-coated glass substrates. Temperature-dependent dark current-voltage measurements were carried out to extract the diode parameters and to determine the dominant conduction mechanisms in the forward- and reverse-bias regions. The heterostructure showed three order of magnitude rectifying behavior with a barrier height of 0.72 eV and ideality factor of 2.16 at room temperature. In the high...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alper and T. Akın, “Symmetrical and decoupled nickel microgyroscope on insulating substrate,”
SENSORS AND ACTUATORS A-PHYSICAL
, pp. 336–350, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47157.