Image Chain Simulation for Earth Observation Satellites

Alici, Kamil B.
Öktem, Sevinç Figen
Karci, Ozgur
Yilmaz, A. Serdar
Selimoglu, Ozgur
We present a general-purpose end-to-end image chain simulation (ICS) that enables to assess the image quality of a satellite imager for Earth observations. The image chain consists of four main components: radiometry, atmosphere, optics, and detector. In particular, ICS first computes the input radiance from the reflectance values of a high-resolution input, and then calculates the image radiance by using the optical transfer function (OTF) of the overall system. This OTF contains all the distortion effects due to atmosphere, optics, and detector. Finally, the signal on the detector, including the noise term, is computed and converted to digital counts. To evaluate the overall image quality, metrics such as peak signal-to-noise ratio and minimum resolvable contrast are used. To illustrate the utility and versatility of the developed ICS, several analyses are also performed that demonstrate the system performance of a generic satellite imagery. Our development provides a unified framework for the ICS developers of spaceborne Earth-observing systems. Such a complete end-to-end ICS is crucial for the effective development of an Earth observation satellite, especially in the design and test phases.


Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)
Durmaz, Murat; Karslıoğlu, Mahmut Onur (Springer Science and Business Media LLC, 2015-04-01)
There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters wh...
An interactive program for GPS-based dynamic orbit determination of small satellites
Karslıoğlu, Mahmut Onur (Elsevier BV, 2005-04-01)
This work introduces a near real-time dynamic orbit determination program for small satellites. A quality check of orbit data on ground is important for satellites with GPS positioning that is only available at discrete time epochs because of the limited power-supply onboard, so that space-borne GPS receivers are switched on/off intermittently, or because of possible malfunctioning of GPS receivers. The method of parameter estimation with space-borne GPS position fixes as observations is based on an extende...
Comparative evaluation of ISAR processing algorithms
Tufan, Alper; Dural Ünver, Mevlüde Gülbin; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2012)
In this thesis, Inverse Synthtetic Aperture Radar image reconstruction techniques, named as Range Doppler, Back Projection, Polar Formatting, Multiple Signal Classification (MUSIC) and Time Frequency techniques are analysed and compared using simulations. Time Frequency techniques investigated in this thesis are Short Time Fourier Transform, Wigner-Ville Distribution, Smoothed Wigner-Ville Distribution and Choi-Williams Distribution. First, some fundamental concepts of ISAR, such as resolution, range profil...
Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
KUTER, SEMİH; Akyürek, Sevda Zuhal; Weber, Gerhard-Wilhelm (Elsevier BV, 2018-02-01)
In this paper, a novel approach to estimate fractional snow cover (FSC) from MODIS data in a complex and heterogeneous Alpine terrain is represented by using a state-of-the-art nonparametric spline regression method, namely, multivariate adaptive regression splines (MARS). For this purpose, twenty MODIS - Landsat 8 image pairs acquired between April 2013 and December 2016 over European Alps are used. Fifteen of the image pairs are employed during model training and five images are reserved as an independent...
Image fusion for improving spatial resolution of multispectral satellite images
Ünlüsoy, Deniz; Süzen, Mehmet Lütfi; Department of Geological Engineering (2013)
In this study, four different image fusion techniques have been applied to high spectral and low spatial resolution satellite images with high spatial and low spectral resolution images to obtain fused images with increased spatial resolution, while preserving spectral information as much as possible. These techniques are intensity-hue-saturation (IHS) transform, principle component analysis (PCA), Brovey transform (BT), and Wavelet transform (WT) image fusion. Images used in the study belong to Çankırı reg...
Citation Formats
K. B. Alici, S. F. Öktem, O. Karci, A. S. Yilmaz, and O. Selimoglu, “Image Chain Simulation for Earth Observation Satellites,” IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, pp. 4014–4023, 2019, Accessed: 00, 2020. [Online]. Available: