Seismic retrofitting of bridges by response modification techniques based on altering bearing fixities

Feasibility of a proposed seismic retrofitting technique for typical bridges in the Central US has been studied. The retrofitting technique is based on modifying the fixity conditions of the bearings for response modification purposes to eliminate the need for costly retrofitting of substructures. For this purpose, a seismically vulnerable bridge, typical of those in the Central US was selected. Detailed seismic analyses of the bridge were then conducted. It was found that its bearings, wing-walls and pier foundations needed to be retrofitted. A conventional retrofitting strategy was developed and the cost of retrofit was estimated. Next, the abutment bearings were fixed longitudinally to modify the response of the bridge so as to alleviate the effect of seismic forces transferred to vulnerable pier foundations. It was observed that the proposed retrofitting technique effectively mitigated the seismic forces transferred to the pier foundations and eliminated the need for their costly retrofitting. Thus, the proposed retrofitting method may be used for economical seismic retrofitting of such bridges in the Central US or in similar regions of low to moderate risk of seismic activity.


Seismic performance of multisimple-span bridges retrofitted with link slabs
Caner, Alp; Zia, P. (American Society of Civil Engineers (ASCE), 2002-03-01)
During earthquakes multisimple-span bridges are vulnerable to span separation at their expansion joints. A common way of preventing unseating of spans is to have cable or rod restrainers that provide connections between adjacent spans. Alternatively, dislocation of the girders can be controlled with a link slab that is the continuous portion of the bridge deck between simple spans. Seismic retrofit with link slab should be more cost-effective than the existing methods when it is performed during redecking o...
Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Seismic behavior of autoclaved aerated concrete low rise buildings with reinforced wall panels
Gökmen, Furkan; Binici, Barış; Canbay, Erdem (Springer Science and Business Media LLC, 2019-07-01)
Reinforced Autoclaved Aerated Concrete (AAC) wall panels are more commonly used to construct load-bearing walls in low-rise prefabricated buildings located in seismic zones. In the scope of this study, the seismic response of buildings constructed with reinforced AAC wall panels was investigated. To this end, an in situ test was conducted on a two-story test building under reversed cyclic displacement excursions. It was determined that the test building could carry a lateral load of 60% more than its weight...
Seismic behaviour of roller compacted concrete dams under different base treatments
Gharibdoust, Ali; ALDEMİR, ALPER; Binici, Barış (Informa UK Limited, 2019-09-09)
The effect of base roughness on the seismic behaviour of roller compacted concrete gravity dams were investigated by pseudo-dynamically testing two 1/75 scaled specimens with smooth and rough base treatments. Both specimens were tested under the effect of three different hazard level earthquakes and also a pushover experiment was conducted to obtain the capacity curve of each specimen. The smooth base specimen exhibited significant sliding under the effect of the maximum credible earthquake motion. In contr...
Seismic retrofitting of highway bridges in Illinois using friction pendulum seismic isolation bearings and modeling procedures
Dicleli, Murat (Elsevier BV, 2003-07-01)
In this paper, the economical and structural efficiency of friction pendulum bearings (FPB) for retrofitting typical seismically vulnerable bridges in the State of Illinois is studied. For this purpose, a bridge was carefully selected by the Illinois Department of Transportation (IDOT) to represent typical seismically vulnerable bridges commonly used in the State of Illinois. A comprehensive structural model of the bridge was first constructed for seismic analysis. An iterative multi-mode response spectrum ...
Citation Formats
M. Dicleli, “Seismic retrofitting of bridges by response modification techniques based on altering bearing fixities,” JOURNAL OF EARTHQUAKE ENGINEERING, pp. 483–495, 2005, Accessed: 00, 2020. [Online]. Available: