Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optical and electrical characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films
Date
2017-10-01
Author
Gullu, H. H.
Bayrakli, O.
Parlak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
In this study, optical and electrical characteristics of the Cu0.5Ag0.5InSe2 (CAIS) polycrystalline thin films were investigated. They were deposited on soda lime glass substrates with the evaporation of pure elemental sources by using physical thermal evaporation technique at 200 degrees C substrate temperature. The thin films were characterized firstly in as-grown form, and then annealed under the nitrogen environment to deduce the effects of annealing on the optical and electrical properties of the deposited thin films related to their structural changes. In fact, these material properties of the CAIS thin films were studied by carrying out transmission, Hall Effect, and temperature dependent dark- and photo-conductivity measurements as a function of annealing temperature. From the optical analysis, the band gap energies were found between 1.44 and 1.51 eV for the as-grown and annealed films, respectively. The analysis of electrical conductivity showed that electrical properties of the films were dependent on the variable range hopping and thermionic emission conduction mechanisms at low temperature region and above the room temperature, respectively. Under different illumination intensities, the photo-conductivity properties of CAIS film samples were analyzed under the consideration of two-center model.
Subject Keywords
Thin film
,
Annealing
,
Band gap
,
Electrical conductivity
URI
https://hdl.handle.net/11511/46438
Journal
THIN SOLID FILMS
DOI
https://doi.org/10.1016/j.tsf.2017.08.024
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Numerical and experimental investigation on laser damage threshold of highly reflective multilayer thin films
Ocak, Mustafa; Sert, Cüneyt; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2016)
The laser induced temperature distributions on the optical thin films are investigated in this study. Effects of optical design modifications on thermal performance of highly reflective (HR) multilayer thin films are analyzed. Firstly, a conventional 19 layer HR coating is selected as a reference and the laser induced temperature distribution is evaluated on it. Then, alternative HR designs are developed by employing non-quarter wave layers, over coat (OC) layers and two high index materials in the coating ...
Optical and structural characteristics of electrodeposited Cd 1-xZnxS nanostructured thin films
Erturk, K.; Isik, M.; Terlemezoglu, M.; Hasanlı, Nızamı (2021-04-01)
The structural and optical characteristics of Cd1-xZnxS (CdZnS) thin films grown by the electrodeposition method were investigated in the present paper. The crystalline structure of the grown CdZnS thin film was determined as cubic wurtzite due to observed diffraction peaks associated with (111) and (220) planes. Atomic compositional ratios of the constituent elements were obtained using energy dispersive spectroscopy and doping concentration of the Zn was found as 5% (x ~ 0.05). Scanning electron microscop...
Characterization of Co-evaporated Cu-Ag-In-Se Thin Films
Gullu, H. H.; COŞKUN, EMRE; Parlak, Mehmet (2014-12-01)
In this study, annealing effect on the structural, electrical, and optical characteristics of the quaternary Cu-Ag-In-Se (CAIS) thin films was investigated. These samples were deposited by co-evaporation of the Cu, Ag, In2Se3, and Se sources at the substrate temperature of 300 degrees C. The structural properties of the thin films were analyzed by means of X-ray diffraction, and the results indicated that all of the films were in the polycrystalline structure with the preferred orientation along (112) direc...
Structural, optical and electrical characterization of CDSEXTE1-X thin films
Demir, Merve; Parlak, Mehmet; Department of Physics (2020)
The aim of this study is to investigate the structural, optical and electrical properties of ternary CdSexTe1-x thin films. CdTe and CdSe thin films are being used in solar cells due to their favorable direct band gaps of 1.5eV and 1.7eV, respectively. Moreover, having high absorption coefficients provide an important role to CdTe and CdSe films as an absorber layer. Therefore, by mixing these two films, properties of resultant ternary CdSexTe1-x alloy can be optimized for solar cell applications. Chemical ...
Structural and optical characteristics of thermally evaporated TlGaSe2 thin films
Isik, M.; KARATAY, AHMET; Hasanlı, Nızamı (2022-02-01)
The present paper reports the structural and optical properties of thermally evaporated TlGaSe2 thin films. X-ray diffraction pattern of evaporated film presented two diffraction peaks around 24.15 and 36.00° which are associated with planes of monoclinic unit cell. Surface morphology of the TlGaSe2 thin films was investigated by scanning electron and atomic force microscopy techniques. Although there was observed some ignorable amount of clusters of quasi-spherical shape in the scanning electron microscope...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Gullu, O. Bayrakli, and M. Parlak, “Optical and electrical characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films,”
THIN SOLID FILMS
, pp. 29–35, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46438.