SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS PROBLEMS USING AN ITERATIVE INNER-OUTER SCHEME WITH ORDINARY AND APPROXIMATE MULTILEVEL FAST MULTIPOLE ALGORITHMS

Download
2010-01-01
We present an iterative inner-outer scheme for the efficient solution of large-scale electromagnetics problems involving perfectly-conducting objects formulated with surface integral equations. Problems are solved by employing the multilevel fast multipole algorithm (MLFMA) on parallel computer systems. In order to construct a robust preconditioner, we develop an approximate MLFMA (AMLFMA) by systematically increasing the efficiency of the ordinary MLFMA. Using a flexible outer solver, iterative MLFMA solutions are accelerated via an inner iterative solver, employing AMLFMA and serving as a preconditioner to the outer solver. The resulting implementatin is tested on various electromagnetics problems involving both open and closed conductors. We show that the processing time decreases significantly using the proposed method, compared to the solutions obtained with conventional preconditioners in the literature.
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER

Suggestions

Solutions of electromagnetics problems involving hundreds of millions of unknowns with parallel multilevel fast multipole algorithmt
Ergül, Özgür Salih (2009-06-05)
We present the solution of extremely large electromagnetics problems formulated with surface integral equations (SIEs) and discretized with hundreds of millions of unknowns. Scattering and radiation problems involving three-dimensional closed metallic objects are formulated rigorously by using the combined-field integral equation (CFIE). Surfaces are discretized with small triangles, on which the Rao-Wilton-Glisson (RWG) functions are defined to expand the induced electric current and to test the boundary c...
Generalized Hybrid Surface Integral Equations for Finite Periodic Perfectly Conducting Objects
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-01-01)
Hybrid formulations that are based on simultaneous applications of diversely weighted electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) on periodic but finite structures involving perfectly conducting surfaces are presented. Formulations are particularly designed for closed conductors by considering the unit cells of periodic structures as sample problems for optimizing EFIE and MFIE weights in selected regions. Three-region hybrid formulations, which are designed by geneti...
Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies
Gur, Ugur Meric; Ergül, Özgür Salih (2017-01-01)
We consider method-of-moments solutions of the recently developed potential integral equations (PIEs) for low-frequency electromagnetic problems involving perfectly conducting objects. The electric current density, electric charge density, and near-zone fields calculated by using PIEs are investigated at low frequencies, in contrast to those obtained via the conventional electric-field integral equation (EFIE). We show that: 1) the charge density can accurately be found by using EFIE despite the very poor a...
Solution of Navier-Stokes Equations Using FEM with Stabilizing Subgrid
Tezer, Münevver; Aydın Bayram, Selma (2009-07-03)
The Galerkin finite element method (FEM) is used for solving the incompressible Navier Stokes equations in 2D. Regular triangular elements are used to discretize the domain and the finite-dimensional spaces employed consist of piece wise continuous linear interpolants enriched with the residual-free bubble (RFB) functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described in our previous paper [Int. J. Numer. Methods Fluids 58, 551-572 (2007)]....
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
Citation Formats
Ö. S. Ergül and L. Gurel, “SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS PROBLEMS USING AN ITERATIVE INNER-OUTER SCHEME WITH ORDINARY AND APPROXIMATE MULTILEVEL FAST MULTIPOLE ALGORITHMS,” PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, pp. 203–223, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46532.