Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS PROBLEMS USING AN ITERATIVE INNER-OUTER SCHEME WITH ORDINARY AND APPROXIMATE MULTILEVEL FAST MULTIPOLE ALGORITHMS
Download
index.pdf
Date
2010-01-01
Author
Ergül, Özgür Salih
Gurel, L.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
90
downloads
Cite This
We present an iterative inner-outer scheme for the efficient solution of large-scale electromagnetics problems involving perfectly-conducting objects formulated with surface integral equations. Problems are solved by employing the multilevel fast multipole algorithm (MLFMA) on parallel computer systems. In order to construct a robust preconditioner, we develop an approximate MLFMA (AMLFMA) by systematically increasing the efficiency of the ordinary MLFMA. Using a flexible outer solver, iterative MLFMA solutions are accelerated via an inner iterative solver, employing AMLFMA and serving as a preconditioner to the outer solver. The resulting implementatin is tested on various electromagnetics problems involving both open and closed conductors. We show that the processing time decreases significantly using the proposed method, compared to the solutions obtained with conventional preconditioners in the literature.
Subject Keywords
Hybrid integral-equations
,
Linear-systems
,
Translation operator
,
Scattering
,
Preconditioner
URI
https://hdl.handle.net/11511/46532
Journal
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
DOI
https://doi.org/10.2528/pier10061711
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Solutions of electromagnetics problems involving hundreds of millions of unknowns with parallel multilevel fast multipole algorithmt
Ergül, Özgür Salih (2009-06-05)
We present the solution of extremely large electromagnetics problems formulated with surface integral equations (SIEs) and discretized with hundreds of millions of unknowns. Scattering and radiation problems involving three-dimensional closed metallic objects are formulated rigorously by using the combined-field integral equation (CFIE). Surfaces are discretized with small triangles, on which the Rao-Wilton-Glisson (RWG) functions are defined to expand the induced electric current and to test the boundary c...
Efficient Three-Layer Iterative Solutions of Electromagnetic Problems Using the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-05-19)
We present a three-layer iterative algorithm for fast and efficient solutions of electromagnetic problems formulated with surface integral equations. The strategy is based on nested iterative solutions employing the multilevel fast multipole algorithm and its approximate forms. We show that the three-layer mechanism significantly reduces solution times, while it requires no additional memory as opposed to algebraic preconditioners. Numerical examples involving three-dimensional scattering problems are prese...
Generalized Hybrid Surface Integral Equations for Finite Periodic Perfectly Conducting Objects
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-01-01)
Hybrid formulations that are based on simultaneous applications of diversely weighted electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) on periodic but finite structures involving perfectly conducting surfaces are presented. Formulations are particularly designed for closed conductors by considering the unit cells of periodic structures as sample problems for optimizing EFIE and MFIE weights in selected regions. Three-region hybrid formulations, which are designed by geneti...
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül and L. Gurel, “SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS PROBLEMS USING AN ITERATIVE INNER-OUTER SCHEME WITH ORDINARY AND APPROXIMATE MULTILEVEL FAST MULTIPOLE ALGORITHMS,”
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
, pp. 203–223, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46532.