Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Method for energy performance integration in corporate public real estate management
Date
2014-04-01
Author
Gürsel Dino, İpek
SARİYİLDİZ, Sevil
Stouffs, Rudi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
244
views
0
downloads
Cite This
Building-performance assessment is receiving increased attention within the building industry because of the European Union's (EU's) targets to improve energy efficiency and to increase the use of renewable energy technologies. In this context, there is great emphasis placed on the existing building stock as having a huge environmental impact. The continuous assessment of the energy performance of existing buildings comes into focus to ensure the intended performance and operation during the building life cycle. This paper introduces the Energy Performance Integration in Public Corporate Real Estate Management (EPI-CREM) initiative that aims to improve the energy performance and rational use of energy across the public building stock in Europe by embedding energy-saving measures into the existing public corporate real estate management (REM) processes. To this end, EPI-CREM focuses on the integration of energy-improving actions into the long-term maintenance plans of existing buildings. In this paper, the EPI-CREM method and supporting tools are discussed from a functional point of view, followed by an evaluation of the method based on the results of its implementation on pilot buildings in three participating EU countries.
Subject Keywords
Civil and Structural Engineering
,
Safety, Risk, Reliability and Quality
,
Building and Construction
URI
https://hdl.handle.net/11511/46712
Journal
Journal of Performance of Constructed Facilities
DOI
https://doi.org/10.1061/(asce)cf.1943-5509.0000428
Collections
Department of Architecture, Article
Suggestions
OpenMETU
Core
Image-based construction of building energy models using computer vision
Gürsel Dino, İpek; Iseri, Orcun Koral; Akin, Sahin; Kalfaoglu, Esat; Erdogan, Bilge; Kalkan, Sinan; Alatan, Abdullah Aydın (Elsevier BV, 2020-08-01)
Improving existing buildings' energy performance requires energy models that accurately represent the building. Computer vision methods, particularly image-based 3D reconstruction, can effectively support the creation of 3D building models. In this paper, we present an image-based 3D reconstruction pipeline that supports the semi-automated modeling of existing buildings. We developed two methods for the robust estimation of the building planes from a 3D point cloud that (i) independently estimate each plane...
Comparison of Performance of Two Run-of-River Plants during Transient Conditions
Çalamak, Melih; Bozkuş, Zafer (American Society of Civil Engineers (ASCE), 2013-10-01)
Water hammer is an unsteady hydraulic problem commonly found in closed conduits of hydropower plants, water distribution networks, and liquid pipeline systems. Because of either a malfunction of a system or inadequate operation conditions, a pipeline may collapse or burst erratically, resulting in substantial damages and human loss in some cases. Therefore, it is crucial that engineers design and/or analyze projects with reliable computing methods for all foreseeable operation situations. In this paper, tra...
PREDICTION OF ENERGY PERFORMANCE GAP IN BUILDINGS WITH MACHINE LEARNING ALGORITHMS
YILMAZ, DERYA; Tanyer, Ali Murat; Dikmen Toker, İrem; Department of Architecture (2022-7)
The energy performance gap presents obstacles for governments to reduce dependency on foreign energy sources, as well as for policymakers to be successful in future ambitions about reducing the environmental impacts of buildings. Although considerable research focused on the reasons, reduction, or quantification of the energy performance gap in buildings, little attention has been given in the past to methods that would inform decision makers about a likely performance gap. Such studies could change the act...
Seismic Performance Assessment of Masonry Buildings Using In Situ Material Properties
Cobanoglu, Baran; ALDEMİR, ALPER; Demirel, Ismail Ozan; Binici, Barış; Canbay, Erdem; Yakut, Ahmet (American Society of Civil Engineers (ASCE), 2017-08-01)
Seismic performance assessment of existing buildings requires the existing material's properties to be determined as this has a significant influence on the seismic risk. As one of the most common construction type in Turkey, masonry buildings are assessed generally based on the recommended material properties specified in relevant codes as opposed to testing of samples taken from the existing buildings. However, due to different material types and workmanship quality, the specified properties might be quit...
Development of silica fume-based geopolymer foams
Shakouri, Sahra; Bayer, Özgür; Erdoğan, Sinan Turhan (Elsevier BV, 2020-11-01)
Thermal insulation materials are critical for reducing the energy consumption and carbon emissions associated with buildings. A good insulation material must not only have low density and sufficient mechanical properties but also resist high temperatures and fires. In addition, its production process must be simple and inexpensive. This study describes the production of very low density (>85 kg/m(3)) inorganic foams with high porosity (<94%). Silica fume and NaOH solutions are mixed to prepare a geopolymer ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Gürsel Dino, S. SARİYİLDİZ, and R. Stouffs, “Method for energy performance integration in corporate public real estate management,”
Journal of Performance of Constructed Facilities
, pp. 286–302, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46712.