Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evaluation of Assumptions in Soil Moisture Triple Collocation Analysis
Download
index.pdf
Date
2014-06-01
Author
Yılmaz, Mustafa Tuğrul
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and orthogonality with respect to the truth) are required for TCA estimates to be unbiased. Even though soil moisture studies commonly acknowledge that these assumptions are required for an unbiased TCA, no study has specifically investigated the degree to which errors in existing soil moisture datasets conform to these assumptions. Here these assumptions are evaluated both analytically and numerically over four extensively instrumented watershed sites using soil moisture products derived from active microwave remote sensing, passive microwave remote sensing, and a land surface model. Results demonstrate that nonorthogonal and error cross-covariance terms represent a significant fraction of the total variance of these products. However, the overall impact of error cross correlation on TCA is found to be significantly larger than the impact of nonorthogonal errors. Because of the impact of cross-correlated errors, TCA error estimates generally underestimate the true random error of soil moisture products.
Subject Keywords
Atmospheric Science
URI
https://hdl.handle.net/11511/46717
Journal
JOURNAL OF HYDROMETEOROLOGY
DOI
https://doi.org/10.1175/jhm-d-13-0158.1
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: use of machine learning methods, multiple GCMs and emission scenarios
OKKAN, UMUT; İnan, Gül (Wiley, 2015-09-01)
In this study, statistical downscaling of general circulation model (GCM) simulations to monthly inflows of Kemer Dam in Turkey under A1B, A2, and B1 emission scenarios has been performed using machine learning methods, multi-model ensemble and bias correction approaches. Principal component analysis (PCA) has been used to reduce the dimension of potential predictors of National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. Then, the reasonabl...
Impact of Model Relative Accuracy in Framework of Resealing Observations in Hydrological Data Assimilation Studies
Yılmaz, Mustafa Tuğrul; Ryu, D. (American Meteorological Society, 2016-08-01)
Soil moisture datasets vary greatly with respect to their time series variability and signal-to-noise characteristics. Minimizing differences in signal variances is particularly important in data assimilation to optimize the accuracy of the analysis obtained after merging model and observation datasets. Strategies that reduce these differences are typically based on resealing the observation time series to match the model. As a result, the impact of the relative accuracy of the model reference dataset is of...
Predictability of Seasonal Precipitation Using Joint Probabilities
Yılmaz, Mustafa Tuğrul (2010-01-17)
This paper tests whether seasonal mean precipitation is predictable using a new method that estimates and analyzes joint probabilities. The new estimation method is to partition the globe into boxes, pool all data within the box to estimate a single joint probability of precipitation for two consecutive seasons, and then apply the resulting joint probability to individual pixels in the box. Pooling data in this way allows joint probabilities to be estimated in relatively small sample sizes, but assumes that...
Assessing nonstationarity impacts for historical and projected extreme precipitation in Turkey
Aziz, Rizwan; Yücel, İsmail (Springer Science and Business Media LLC, 2021-01-01)
The temporal variability in yearly and seasonal extreme precipitation across Turkey is investigated using stationary and nonstationary frequency approach. Four frequency distributions namely, generalized extreme value (GEV), gumbel, normal, and lognormal distributions are used for the historical period (1971-2016) as well as the projection period (2051-2100). The nonstationarity impacts are determined by calculating the percentage difference of return levels (30 years) between stationary and nonstationary c...
Optimally merging precipitation to minimize land surface modeling errors
Yılmaz, Mustafa Tuğrul; Shrestha, Roshan; Anantharaj, Valentine G. (American Meteorological Society, 2010-03-01)
This paper introduces a new method to improve land surface model skill by merging different available precipitation datasets, given that an accurate land surface parameter ground truth is available. Precipitation datasets are merged with the objective of improving terrestrial water and energy cycle simulation skill, unlike most common methods in which the merging skills are evaluated by comparing the results with gauge data or selected reference data. The optimal merging method developed in this study minim...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. T. Yılmaz, “Evaluation of Assumptions in Soil Moisture Triple Collocation Analysis,”
JOURNAL OF HYDROMETEOROLOGY
, pp. 1293–1302, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46717.