Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Silicon nanowire-silver indium selenide heterojunction photodiodes
Date
2013-09-20
Author
KULAKCI, Mustafa
ÇOLAKOĞLU, Tahir
OZDEMİR, Baris
Parlak, Mehmet
Ünalan, Hüsnü Emrah
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
246
views
0
downloads
Cite This
Structural and optoelectronic properties of silicon (Si) nanowire-silver indium selenide (AgInSe2) thin film heterojunctions were investigated. The metal-assisted etching method was employed to fabricate vertically aligned Si nanowire arrays. Stoichiometric AgInSe2 films were then deposited onto the nanowires using co-sputtering and sequential selenization techniques. It was demonstrated that the three-dimensional interface between the Si nanowire arrays and the AgInSe2 thin film significantly improved the photosensitivity of the heterojunction diode compared to the planar reference. The improvements in device performance are discussed in terms of interface state density, reflective losses and surface recombination of the photogenerated carriers, especially in the high-energy region of the spectrum.
Subject Keywords
Mechanical Engineering
,
Electrical and Electronic Engineering
,
General Materials Science
,
Mechanics of Materials
,
Bioengineering
,
General Chemistry
URI
https://hdl.handle.net/11511/46736
Journal
NANOTECHNOLOGY
DOI
https://doi.org/10.1088/0957-4484/24/37/375203
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models
Martin, Bryn A.; Kutluay, Umit; Yazıcıoğlu, Yiğit (ASTM International, 2013-09-01)
Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were pr...
Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes
Wang, Nan; Yano, Koji; Durkan, Colm; Plank, Natalie; Welland, Mark E.; Zhang, Yan; Ünalan, Hüsnü Emrah; Mann, Mark; Amaratunga, G. A. J.; Milne, William I. (IOP Publishing, 2009-03-11)
We report the direct measurement of electrical transport through rod-like polymer molecules, of poly(ethyl propiolate) (PEP), utilizing single walled carbon nanotubes (SWNTs) as electrodes. The electrical properties of the devices were measured (i) before cutting a SWNT, (ii) when a SWNT was cut and (iii) after PEP deposition into the nanoscale gap in a cut SWNT. The gate-dependent electrical properties showed a reduction in current from I-on = 2.4 x 10(-7) A for SWNT devices to I-on = 3.6 x 10(-9) A for PE...
High-performance, bare silver nanowire network transparent heaters
Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Ünalan, Hüsnü Emrah (IOP Publishing, 2016-11-04)
Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to i...
Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires
Ozdemir, Baris; Kulakci, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2011-04-15)
Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed ...
Micropatterned lead zirconium titanate thin films
Vartuli, JS; Özenbaş, Ahmet Macit; Chun, CM; Trau, M; Aksay, IA (Cambridge University Press (CUP), 2003-05-01)
Micropatterning of Pb(Zr0.52Ti0.48)O-3 (PZT) thin films with line features as small as 350 nm was demonstrated through capillary molding of organometallic solutions within the continuous channels of an elastomeric mold. Despite the large stresses that develop during the evaporation of the solvent, pyrolysis of the organics, and the densification and crystallization of the inorganic gel, the patterned crystalline PZT films were crack-free and mechanically robust. Flawless regions as large as I cm(2) were obt...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. KULAKCI, T. ÇOLAKOĞLU, B. OZDEMİR, M. Parlak, H. E. Ünalan, and R. Turan, “Silicon nanowire-silver indium selenide heterojunction photodiodes,”
NANOTECHNOLOGY
, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46736.