Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models
Date
2013-09-01
Author
Martin, Bryn A.
Kutluay, Umit
Yazıcıoğlu, Yiğit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
275
views
0
downloads
Cite This
Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were prestressed and had the shape of cylindrical rods. It was possible to consistently identify material properties of all specimen samples from different batches of the material obtained from the manufacturer. As a general trend, material models with a higher number of parameters performed better, with the exception of models with fractional order damping mechanisms. Fractional models had the highest success for nearly all the samples in representing the dynamic behavior of the elastomer in the frequency range of 5-100 Hz, where the specimen structure displays a strong modal response.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
URI
https://hdl.handle.net/11511/42995
Journal
JOURNAL OF TESTING AND EVALUATION
DOI
https://doi.org/10.1520/jte20120235
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy
Klusemann, Benjamin; Yalçınkaya, Tuncay (Elsevier BV, 2013-09-01)
A gradient crystal plasticity model in the framework of continuum thermodynamics and rate variational formulation is presented for the description of plastic deformation patterning in a system with non-convex energetic hardening. The paper focuses on the extension of the 1D deformation patterning analysis of Yalcinkaya et al. (2011) to 2D for monotonic loading histories. Solution algorithm is based on the simultaneous solution of displacement and plastic slip fields, which have been considered as primary va...
Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels
Gür, Cemil Hakan; Çam, İbrahim (Elsevier BV, 2007-05-01)
The aim of this study is to compare the performance of magnetic Barkhausen noise and ultrasonic methods for the evaluation of the microstructure of commercial steels. Following the austenitization of the specimens made of SAE 1040 and SAE 4140, various heat treatments were carried out to obtain microstructures consisting of martensite, tempered martensite, fine pearlite-ferrite, and coarse pearlite-ferrite. The microstructures were initially characterized by SEM investigation and hardness measurements. The ...
Silicon nanowire-silver indium selenide heterojunction photodiodes
KULAKCI, Mustafa; ÇOLAKOĞLU, Tahir; OZDEMİR, Baris; Parlak, Mehmet; Ünalan, Hüsnü Emrah; Turan, Raşit (IOP Publishing, 2013-09-20)
Structural and optoelectronic properties of silicon (Si) nanowire-silver indium selenide (AgInSe2) thin film heterojunctions were investigated. The metal-assisted etching method was employed to fabricate vertically aligned Si nanowire arrays. Stoichiometric AgInSe2 films were then deposited onto the nanowires using co-sputtering and sequential selenization techniques. It was demonstrated that the three-dimensional interface between the Si nanowire arrays and the AgInSe2 thin film significantly improved the ...
Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing
Yesil, Sertan; Winkelrnann, Charles; Bayram, Göknur; La Saponara, Valeria (Elsevier BV, 2010-10-25)
This paper documents the mechanical and electrical performance of self-sensing conductive polymer composites prepared with a low-cost technique and small hardware, able to considerably improve the dispersion and the surface adhesion of multi-walled carbon nanotubes (CNTs) in epoxy resin with respect to amine-modified CNTs and as-received CNTs. Surface treatment of the CNTs is performed using hexamethylene diamine, or a mix of sulfuric and nitric acid, and one of two surfactants (for the diamine treatment on...
Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. A. Martin, U. Kutluay, and Y. Yazıcıoğlu, “Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models,”
JOURNAL OF TESTING AND EVALUATION
, pp. 804–812, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42995.