Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stochastic geometry model of rock mass fracture network in tunnels
Date
2018-08-01
Author
Azarafza, Mohammad
Akgün, Haluk
Asghari-Kaljahi, Ebrahim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
0
downloads
Cite This
Geometric distributions of fractures or discontinuities control the behaviour, and limit the strength and the stability of rock masses where the best stabilization and improvement method for that rock mass could be achieved based on favourable discontinuity geometry. This study introduces an algorithm named 'Stochastic Geometry Model of Fractures Network in Tunnels (SGMFNT)', which was developed with the MA THEMATICA software. The SGMFNT method provides a fractures geometric distribution database to aid discontinuous rock mass stability analysis by block modelling codes. This algorithm increased the accuracy of the discontinuity model based on the Heliot and Baecher models in a 2D space. The SGMFNT that was used in two of the sectors of the Kani-Sib water conveyance tunnel in the west Azerbaijan province, Iran has successfully provided the rock mass geometrical discontinuity model for this case study.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Earth and Planetary Sciences (miscellaneous)
,
Geology
URI
https://hdl.handle.net/11511/46758
Journal
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY
DOI
https://doi.org/10.1144/qjegh2017-136
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Seismic energy dissipation in deteriorating systems through low-cycle fatigue
Erberik, Murat Altuğ; Sucuoğlu, Haluk (Wiley, 2004-01-01)
Energy dissipation characteristics of structural members which exhibit both strength and stiffness deterioration under imposed displacement reversals are investigated. In the experimental part, 17 reinforced concrete beam specimens were tested under constant and variable amplitude inelastic displacement cycles. The constant-amplitude tests were employed to determine the low-cycle fatigue behaviour of specimens where the imposed displacement amplitude was the major variable. A two-parameter fatigue model was...
Fuzzy approach for preliminary design of weak rock slopes in lignite mines
Yardımcı, Ahmet Güneş; Karpuz, Celal (Springer Science and Business Media LLC, 2018-02-01)
Rock slope failure modes are either driven by structurally controlled mechanisms (planar, wedge, or toppling failure) or lean upon the highly jointed or weak rock mass (circular failure). Developing practical tools for preliminary slope design is a popular topic among geotechnical society. This study proposes a practical methodology to predict a safe overall slope angle for weak rock slopes of lignite mines. Rock mass rating (RMR) and slope mass rating (SMR) classification systems can be remarkably misleadi...
Key-block based analytical stability method for discontinuous rock slope subjected to toppling failure
Azarafza, M.; Akgün, Haluk; Ghazifard, A.; Asghari-Kaljahi, E. (Elsevier BV, 2020-08-01)
This study introduces a simplified semi-distinct element algorithm for discontinuous rock slopes under toppling instability assessment based on block theory. The presented algorithm is developed to investigate block, flexural and block-flexural types of toppling failures which have been coded in the Python high-level programming language. In order to investigate toppling instabilities for different modes, the three modelling steps, namely, geometrical, behavioural and mechanical simulations were conducted t...
Seismic response assessment of a stiff structure
Kazaz, I; Yakut, Ahmet; Gulkan, P (Wiley, 2006-05-01)
Seismic response of a lightly reinforced stiff shear-wall structure subjected to ground motions grouped as near- or far-field according to their distance to causative faults is investigated. A model structure that had earlier been studied both experimentally and analytically in the context of a co-ordinated research project is re-examined. The structure is a five-storey lightly reinforced shear-wall model subjected analytically to 55 ground motion records from firm soil sites. Several response parameters ar...
Earthquake fault rupture - Shallow foundation interaction in undrained soils: A simplified analytical approach
Yılmaz, Mustafa Tolga (Wiley, 2007-01-01)
The interaction between normal or reverse fault ruptures and shallow foundations resting on a homogeneous undrained soil layer is investigated. After performing a thorough set of non-linear finite element simulations, three simple kinematic mechanisms are proposed to predict the conditions for the fault rupture to be diverted by the foundation. The results obtained by both numerical and analytical approaches are in good agreement, and support the adequacy of the proposed mechanisms.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Azarafza, H. Akgün, and E. Asghari-Kaljahi, “Stochastic geometry model of rock mass fracture network in tunnels,”
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY
, pp. 379–386, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46758.