Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hypersonic Flow Analysis of Re-entry Vehicles Using Three Dimensional Navier-Stokes Equations
Date
2015-07-27
Author
Özgün, Muharrem
Eyi, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence model is used to analyze hypersonic turbulent flow and the one-equation Spalart-Allmaras turbulence model will be implemented since this turbulence model is numerically robust and generally gives good predictions in hypersonic applications.
URI
https://hdl.handle.net/11511/46764
DOI
https://doi.org/10.2514/6.2015-3881
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Aerothermodynamic design optimization in hypersonic flows
Eyi, Sinan (2013-09-16)
The objective of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler and the finite rate chemical reaction equations. These coupled equations are solved by using Newton's method. The analytical and numerical methods are used to calculate Jacobian matrices. The effects of error in numerical Jacobians on the performance of flow and sensitivity analyses are studied. A gradient based numerical optimization is us...
Aerothermodynamic shape optimization of hypersonic blunt bodies
Eyi, Sinan (2015-07-03)
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a h...
Design optimization in hypersonic flows
Eyi, Sinan (2012-12-01)
The objective of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on axisymmetric Euler and the finite rate chemical reaction equations. These coupled equations are solved by using Newton's method. The analytical method is used to calculate Jacobian matrices. Sensitivities are evaluated by using the adjoint method. The performance of the optimization method is demonstrated in hypersonic flow. © 2012 by the American Institute of Ae...
Aerothermodynamic Shape Optimization ofHypersonic Blunt Bodies
Yumusak, Mine; Eyi, Sinan (null; 2013-06-27)
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler and the finite rate chemical reaction equations. These coupled equations are solved by using Newton’s method. The analytical method is used to calculate the Jacobian matrix. A gradient based numerical optimization is used. Sensitivities are calculated by using the adjoint and direct differentiation methods. The objective of the design is to gener...
Aerothermodynamic Design Optimization of Hypersonic Vehicles
Eyi, Sinan; Boyd, Iain D. (American Institute of Aeronautics and Astronautics (AIAA), 2019-04-01)
The objective of this study is to develop a reliable and efficient design optimization method for hypersonic vehicles focused on aerothermodynamic environments. Considering the nature of hypersonic flight, a high-fidelity aerothermodynamic analysis code is used for the simulation of weakly ionized hypersonic flows in thermochemical nonequilibrium. A gradient-based method is implemented for optimization. Bezier or nonuniform rational basis spline curves are used to parametrize the geometry or the geometry ch...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Özgün and S. Eyi, “Hypersonic Flow Analysis of Re-entry Vehicles Using Three Dimensional Navier-Stokes Equations,” 2015, vol. 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46764.